-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathEKF.m
1021 lines (895 loc) · 36.2 KB
/
EKF.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
%EKF Extended Kalman Filter for navigation
%
% Extended Kalman filter for optimal estimation of state from noisy
% measurments given a non-linear dynamic model. This class is specific to
% the problem of state estimation for a vehicle moving in SE(2).
%
% This class can be used for:
% - dead reckoning localization - map-based localization - map making -
% simultaneous localization and mapping (SLAM)
%
% It is used in conjunction with:
% - a kinematic vehicle model that provides odometry output, represented
% by a Vehicle sbuclass object.
% - The vehicle must be driven within the area of the map and this is
% achieved by connecting the Vehicle subclass object to a Driver
% object.
% - a map containing the position of a number of landmark points and is
% represented by a LandmarkMap object.
% - a sensor that returns measurements about landmarks relative to the
% vehicle's pose and is represented by a Sensor object subclass.
%
% The EKF object updates its state at each time step, and invokes the state
% update methods of the vehicle object. The complete history of estimated
% state and covariance is stored within the EKF object.
%
% Methods::
% run run the filter plotxy plot the actual path of the
% vehicle plotP plot the estimated covariance norm along the path
% plotmap plot estimated landmark points and confidence limits
% plotvehicle plot estimated vehicle covariance ellipses ploterror
% plot estimation error with standard deviation bounds display
% print the filter state in human readable form char convert
% the filter state to human readable string
%
% Properties::
% x_est estimated state P estimated covariance V_est
% estimated odometry covariance W_est estimated sensor covariance
% landmarks maps sensor landmark id to filter state element robot
% reference to the Vehicle object sensor reference to the Sensor
% subclass object history vector of structs that hold the detailed
% filter state from
% each time step
% verbose show lots of detail (default false) joseph use Joseph
% form to represent covariance (default true)
%
% Vehicle position estimation (localization)::
%
% Create a vehicle with odometry covariance V, add a driver to it, create a
% Kalman filter with estimated covariance V_est and initial state
% covariance P0
% veh = Vehicle(V); veh.add_driver( RandomPath(20, 2) ); ekf = EKF(veh,
% V_est, P0);
% We run the simulation for 1000 time steps
% ekf.run(1000);
% then plot true vehicle path
% veh.plotxy('b');
% and overlay the estimated path
% ekf.plotxy('r');
% and overlay uncertainty ellipses
% ekf.plotellipse('g');
% We can plot the covariance against time as
% clf ekf.plotP();
%
% Map-based vehicle localization::
%
% Create a vehicle with odometry covariance V, add a driver to it, create a
% map with 20 point landmarks, create a sensor that uses the map and
% vehicle state to estimate landmark range and bearing with covariance W,
% the Kalman filter with estimated covariances V_est and W_est and initial
% vehicle state covariance P0
% veh = Bicycle(V); veh.add_driver( RandomPath(20, 2) ); map =
% LandmarkMap(20); sensor = RangeBearingSensor(veh, map, W); ekf =
% EKF(veh, V_est, P0, sensor, W_est, map);
% We run the simulation for 1000 time steps
% ekf.run(1000);
% then plot the map and the true vehicle path
% map.plot(); veh.plotxy('b');
% and overlay the estimatd path
% ekf.plotxy('r');
% and overlay uncertainty ellipses
% ekf.plotellipse('g');
% We can plot the covariance against time as
% clf ekf.plotP();
%
% Vehicle-based map making::
%
% Create a vehicle with odometry covariance V, add a driver to it, create a
% sensor that uses the map and vehicle state to estimate landmark range and
% bearing with covariance W, the Kalman filter with estimated sensor
% covariance W_est and a "perfect" vehicle (no covariance), then run the
% filter for N time steps.
%
% veh = Vehicle(V); veh.add_driver( RandomPath(20, 2) ); map =
% LandmarkMap(20); sensor = RangeBearingSensor(veh, map, W); ekf =
% EKF(veh, [], [], sensor, W_est, []);
% We run the simulation for 1000 time steps
% ekf.run(1000);
% Then plot the true map
% map.plot();
% and overlay the estimated map with 97% confidence ellipses
% ekf.plotmap('g', 'confidence', 0.97);
%
% Simultaneous localization and mapping (SLAM)::
%
% Create a vehicle with odometry covariance V, add a driver to it, create a
% map with 20 point landmarks, create a sensor that uses the map and
% vehicle state to estimate landmark range and bearing with covariance W,
% the Kalman filter with estimated covariances V_est and W_est and initial
% state covariance P0, then run the filter to estimate the vehicle state at
% each time step and the map.
%
% veh = Vehicle(V); veh.add_driver( RandomPath(20, 2) ); map =
% PointMap(20); sensor = RangeBearingSensor(veh, map, W); ekf = EKF(veh,
% V_est, P0, sensor, W, []);
% We run the simulation for 1000 time steps
% ekf.run(1000);
% then plot the map and the true vehicle path
% map.plot(); veh.plotxy('b');
% and overlay the estimated path
% ekf.plotxy('r');
% and overlay uncertainty ellipses
% ekf.plotellipse('g');
% We can plot the covariance against time as
% clf ekf.plotP();
% Then plot the true map
% map.plot();
% and overlay the estimated map with 3 sigma ellipses
% ekf.plotmap(3, 'g');
%
% References::
%
% Robotics, Vision & Control, Chap 6, Peter Corke, Springer 2011
%
% Stochastic processes and filtering theory, AH Jazwinski Academic Press
% 1970
%
% Acknowledgement::
%
% Inspired by code of Paul Newman, Oxford University,
% http://www.robots.ox.ac.uk/~pnewman
%
% See also Vehicle, RandomPath, RangeBearingSensor, PointMap,
% ParticleFilter.
% Copyright 2022-2023 Peter Corke, Witold Jachimczyk, Remo Pillat
classdef EKF < handle
%TODO
% add a hook for data association
% show landmark covar as ellipse or pole
% show vehicle covar as ellipse
% show track
% landmarks property should be an array of structs
properties
% STATE:
% the state vector is [x_vehicle x_map] where
% x_vehicle is 1x3 and
% x_map is 1x(2N) where N is the number of map landmarks
x_est % estimated state
P_est % estimated covariance
% landmarks keeps track of landmarks we've seen before.
% Each column represents a landmark. This is a fixed size
% array, indexed by landmark id.
% row 1: the start of this landmark's state in the state vector, initially NaN
% row 2: the number of times we've sighted the landmark
landmarks % map state
V_est % estimate of covariance V
W_est % estimate of covariance W
robot % reference to the robot vehicle
sensor % reference to the sensor
% FLAGS:
% estVehicle estMap
% 0 0
% 0 1 make map
% 1 0 dead reckoning
% 1 1 SLAM
estVehicle % flag: estimating vehicle location
estMap % flag: estimating map
joseph % flag: use Joseph form to compute p
verbose
keepHistory % keep history
P0 % passed initial covariance
map % passed map
% HISTORY:
% vector of structs to hold EKF history
% .x_est estimated state
% .odo vehicle odometry
% .P estimated covariance matrix
% .innov innovation
% .S
% .K Kalman gain matrix
history
dim % robot workspace dimensions
end
methods
% constructor
function ekf = EKF(robot, V_est, P0, varargin)
%EKF.EKF EKF object constructor
%
% E = EKF(VEHICLE, V_EST, P0, OPTIONS) is an EKF that estimates the state
% of the VEHICLE (subclass of Vehicle) with estimated odometry covariance V_EST (2x2) and
% initial covariance (3x3).
%
% E = EKF(VEHICLE, V_EST, P0, SENSOR, W_EST, MAP, OPTIONS) as above but
% uses information from a VEHICLE mounted sensor, estimated
% sensor covariance W_EST and a MAP (LandmarkMap class).
%
% Options::
% 'verbose' Be verbose.
% 'nohistory' Don't keep history.
% 'joseph' Use Joseph form for covariance
% 'dim',D Dimension of the robot's workspace.
% - D scalar; X: -D to +D, Y: -D to +D
% - D (1x2); X: -D(1) to +D(1), Y: -D(2) to +D(2)
% - D (1x4); X: D(1) to D(2), Y: D(3) to D(4)
%
% Notes::
% - If MAP is [] then it will be estimated.
% - If V_EST and P0 are [] the vehicle is assumed error free and
% the filter will only estimate the landmark positions (map).
% - If V_EST and P0 are finite the filter will estimate the
% vehicle pose and the landmark positions (map).
% - EKF subclasses Handle, so it is a reference object.
% - Dimensions of workspace are normally taken from the map if given.
%
% See also Vehicle, Bicycle, Unicycle, Sensor, RangeBearingSensor, LandmarkMap.
opt.history = true;
opt.joseph = true;
opt.dim = [];
[opt,args] = tb_optparse(opt, varargin);
% copy options to class properties
ekf.verbose = opt.verbose;
ekf.keepHistory = opt.history;
ekf.joseph = opt.joseph;
ekf.P0 = P0;
ekf.dim = opt.dim;
% figure what we need to estimate
ekf.estVehicle = false;
ekf.estMap = false;
switch length(args)
case 0
% Deadreckoning:
% E = EKF(VEHICLE, V_EST, P0, OPTIONS)
sensor = []; W_est = []; map = [];
ekf.estVehicle = true;
case 3
% Using a map:
% E = EKF(VEHICLE, V_EST, P0, SENSOR, W_EST, MAP, OPTIONS)
% Estimating a map:
% E = EKF(VEHICLE,[], [], SENSOR, W_EST, [], OPTIONS)
% Full SLAM:
% E = EKF(VEHICLE, V_EST, P0, SENSOR, W_EST, [], OPTIONS)
[sensor, W_est, map] = deal(args{:});
if isempty(map)
ekf.estMap = true;
end
if ~isempty(V_est)
ekf.estVehicle = true;
end
otherwise
error('RTB:EKF:badarg', 'incorrect number of non-option arguments');
end
% check types for passed objects
if ~isempty(map) && ~isa(map, 'LandmarkMap')
error('RTB:EKF:badarg', 'expecting LandmarkMap object');
end
if ~isempty(sensor) && ~isa(sensor, 'Sensor')
error('RTB:EKF:badarg', 'expecting Sensor object');
end
if ~isa(robot, 'Vehicle')
error('RTB:EKF:badarg', 'expecting Vehicle object');
end
% copy arguments to class properties
ekf.robot = robot;
ekf.V_est = V_est;
ekf.sensor = sensor;
ekf.map = map;
ekf.W_est = W_est;
ekf.init();
end
function init(ekf)
%EKF.init Reset the filter
%
% E.init() resets the filter state and clears landmarks and history.
ekf.robot.init();
% clear the history
ekf.history = [];
if isempty(ekf.V_est)
% perfect vehicle case
ekf.estVehicle = false;
ekf.x_est = [];
ekf.P_est = [];
else
% noisy odometry case
ekf.x_est = ekf.robot.q(:); % column vector
ekf.P_est = ekf.P0;
ekf.estVehicle = true;
end
if ~isempty(ekf.sensor)
ekf.landmarks = NaN*zeros(2, ekf.sensor.map.nlandmarks);
end
end
function run(ekf, n, varargin)
%EKF.run Run the filter
%
% E.run(N, OPTIONS) runs the filter for N time steps and shows an animation
% of the vehicle moving.
%
% Options::
% 'plot' Plot an animation of the vehicle moving
%
% Notes::
% - All previously estimated states and estimation history are initially
% cleared.
opt.plot = false;
opt.x_est0 = [];
opt.movie = [];
opt = tb_optparse(opt, varargin);
ekf.init();
if ~isempty(opt.x_est0)
ekf.x_est = opt.x_est0(:);
end
if opt.plot
if ~isempty(ekf.sensor)
ekf.sensor.map.plot();
elseif ~isempty(ekf.dim)
switch length(ekf.dim)
case 1
d = ekf.dim;
axis([-d d -d d]);
case 2
w = ekf.dim(1); h = ekf.dim(2);
axis([-w w -h h]);
case 4
axis(ekf.dim);
end
set(gca, 'ALimMode', 'manual');
else
opt.plot = false;
end
axis manual
xlabel('X'); ylabel('Y')
end
% simulation loop
anim = Animate(opt.movie);
for k=1:n
if opt.plot
ekf.robot.plot();
drawnow
end
ekf.step(opt);
anim.add();
end
anim.close();
end
function xyt = get_xy(ekf)
%EKF.plotxy Get vehicle position
%
% P = E.get_xy() is the estimated vehicle pose trajectory
% as a matrix (Nx3) where each row is x, y, theta.
%
% See also EKF.plotxy, EKF.ploterror, EKF.plotellipse, EKF.plotP.
if ekf.estVehicle
xyt = zeros(length(ekf.history), 3);
for i=1:length(ekf.history)
h = ekf.history(i);
xyt(i,:) = h.x_est(1:3)';
end
else
xyt = [];
end
end
function plotxy(ekf, varargin)
%EKF.plotxy Plot vehicle position
%
% E.plotxy() overlay the current plot with the estimated vehicle path in
% the xy-plane.
%
% E.plotxy(LS) as above but the optional line style arguments
% LS are passed to plot.
%
% See also EKF.get_xy, EKF.ploterror, EKF.plotellipse, EKF.plotP.
xyt=ekf.get_xy();
plot(xyt(:,1), xyt(:,2), varargin{:});
plot(xyt(1,1), xyt(1,2), 'ko', 'MarkerSize', 8, 'LineWidth', 2);
end
function out = ploterror(ekf, varargin)
%EKF.ploterror Plot vehicle position
%
% E.ploterror(OPTIONS) plot the error between actual and estimated vehicle
% path (x, y, theta) versus time. Heading error is wrapped into the range [-pi,pi)
%
% Options::
% 'bound',S Display the confidence bounds (default 0.95).
% 'color',C Display the bounds using color C
% LS Use MATLAB linestyle LS for the plots
%
% Notes::
% - The bounds show the instantaneous standard deviation associated
% with the state. Observations tend to decrease the uncertainty
% while periods of dead-reckoning increase it.
% - Set bound to zero to not draw confidence bounds.
% - Ideally the error should lie "mostly" within the +/-3sigma
% bounds.
%
% See also EKF.plotxy, EKF.plotellipse, EKF.plotP.
opt.color = 'r';
opt.confidence = 0.95;
opt.nplots = 3;
[opt,args] = tb_optparse(opt, varargin);
clf
if ekf.estVehicle
err = zeros(length(ekf.history), 3);
for i=1:length(ekf.history)
h = ekf.history(i);
% error is true - estimated
err(i,:) = ekf.robot.qhist(i,:) - h.x_est(1:3)';
err(i,3) = wrapToPi(err(i,3));
P = diag(h.P);
pxy(i,:) = sqrt( chi2inv_rvc(opt.confidence, 2)*P(1:3) ); %#ok<AGROW>
end
if nargout == 0
clf
t = 1:size(pxy,1);
t = [t t(end:-1:1)]';
subplot(opt.nplots*100+11)
if opt.confidence
edge = [pxy(:,1); -pxy(end:-1:1,1)];
h = patch(t, edge ,opt.color);
set(h, 'EdgeColor', 'none', 'FaceAlpha', 0.3);
end
hold on
plot(err(:,1), args{:});
hold off
grid
ylabel('x error')
subplot(opt.nplots*100+12)
if opt.confidence
edge = [pxy(:,2); -pxy(end:-1:1,2)];
h = patch(t, edge, opt.color);
set(h, 'EdgeColor', 'none', 'FaceAlpha', 0.3);
end
hold on
plot(err(:,2), args{:});
hold off
grid
ylabel('y error')
subplot(opt.nplots*100+13)
if opt.confidence
edge = [pxy(:,3); -pxy(end:-1:1,3)];
h = patch(t, edge, opt.color);
set(h, 'EdgeColor', 'none', 'FaceAlpha', 0.3);
end
hold on
plot(err(:,3), args{:});
hold off
grid
xlabel('Time step')
ylabel('\theta error')
if opt.nplots > 3
subplot(opt.nplots*100+14);
end
else
out = pxy;
end
end
end
function xy = get_map(ekf, varargin)
%EKF.get_map Get landmarks
%
% P = E.get_map() is the estimated landmark coordinates (2xN) one per
% column. If the landmark was not estimated the corresponding column
% contains NaNs.
%
% See also EKF.plotmap, EKF.plotellipse.
xy = [];
for i=1:size(ekf.landmarks,2)
n = ekf.landmarks(1,i);
if isnan(n)
% this landmark never observed
xy = [xy [NaN; NaN]]; %#ok<AGROW>
continue;
end
% n is an index into the *landmark* part of the state
% vector, we need to offset it to account for the vehicle
% state if we are estimating vehicle as well
if ekf.estVehicle
n = n + 3;
end
xf = ekf.x_est(n:n+1);
xy = [xy xf]; %#ok<AGROW>
end
end
function plotmap(ekf, varargin)
%EKF.plotmap Plot landmarks
%
% E.plotmap(OPTIONS) overlay the current plot with the estimated landmark
% position (a +-marker) and a covariance ellipses.
%
% E.plotmap(LS, OPTIONS) as above but pass line style arguments
% LS to plotellipse.
%
% Options::
% 'confidence',C Draw ellipse for confidence value C (default 0.95)
%
% See also EKF.get_map, EKF.plotellipse.
% TODO: some option to plot map evolution, layered ellipses
opt.confidence = 0.95;
[opt,args] = tb_optparse(opt, varargin);
xy = [];
axis equal;
for i=1:size(ekf.landmarks,2)
n = ekf.landmarks(1,i);
if isnan(n)
% this landmark never observed
xy = [xy [NaN; NaN]]; %#ok<AGROW>
continue;
end
% n is an index into the *landmark* part of the state
% vector, we need to offset it to account for the vehicle
% state if we are estimating vehicle as well
if ekf.estVehicle
n = n + 3;
end
xf = ekf.x_est(n:n+1);
P = ekf.P_est(n:n+1,n:n+1);
% TODO reinstate the interval landmark
%plotellipse(xf, P, interval, 0, [], varargin{:});
plotellipse( P, xf, args{:}, "inverted", true, "confidence", opt.confidence);
grid on; hold on;
plot(xf(1), xf(2), 'k.', 'MarkerSize', 10)
end
end
function P = get_P(ekf)
%EKF.get_P Get covariance magnitude
%
% E.get_P() is a vector of estimated covariance magnitude at each time step.
P = zeros(length(ekf.history),1);
for i=1:length(ekf.history)
P(i) = sqrt(det(ekf.history(i).P));
end
end
function plotP(ekf, varargin)
%EKF.plotP Plot covariance magnitude
%
% E.plotP() plots the estimated covariance magnitude against
% time step.
%
% E.plotP(LS) as above but the optional line style arguments
% LS are passed to plot.
p = ekf.get_P();
plot(p, varargin{:});
xlabel('Time step');
ylabel('(det P)^{0.5}')
end
function show_P(ekf, k)
clf
if nargin < 2
k = length(ekf.history);
end
z = log10(abs(ekf.history(k).P));
mn = min(z(~isinf(z)));
z(isinf(z)) = mn;
% cmap = flip( gray(256), 1);
%colormap(parula);
colormap(flipud(bone))
c = gray;
c = [ones(size(c,1),1) 1-c(:,1:2)];
colormap(c)
% imshow(z, ...
% 'DisplayRange', [min(z(:)) max(z(:))], ...
% 'ColorMap', cmap, ...
% 'InitialMagnification', 'fit' )
image(z, 'CDataMapping', 'scaled')
xlabel('state'); ylabel('state');
c = colorbar();
c.Label.String = 'log covariance';
end
function plotellipse(ekf, varargin)
%EKF.plotellipse Plot vehicle covariance as an ellipse
%
% E.plotellipse() overlay the current plot with the estimated
% vehicle position covariance ellipses for 20 points along the
% path.
%
% E.plotellipse(LS) as above but pass line style arguments
% LS to plotellipse.
%
% Options::
% 'interval',I Plot an ellipse every I steps (default 20)
% 'confidence',C Confidence interval (default 0.95)
%
% See also plotellipse.
opt.interval = round(length(ekf.history)/20);
opt.confidence = 0.95;
[opt,args] = tb_optparse(opt, varargin);
holdon = ishold;
hold on
for i=1:opt.interval:length(ekf.history)
h = ekf.history(i);
%plotellipse(h.x_est(1:2), h.P(1:2,1:2), 1, 0, [], varargin{:});
plotellipse(h.P(1:2,1:2), h.x_est(1:2), "inverted", true, "confidence", opt.confidence, args{:});
end
if ~holdon
hold off
end
end
function disp(ekf)
%EKF.disp Display status of EKF object
%
% E.display() displays the state of the EKF object in
% human-readable form.
%
% Notes::
% - This method is invoked implicitly at the command line when the result
% of an expression is a EKF object and the command has no trailing
% semicolon.
%
% See also EKF.char.
loose = strcmp( get(0, 'FormatSpacing'), 'loose'); %#ok<GETFSP>
if loose
disp(' ');
end
% disp([inputname(1), ' = '])
disp( char(ekf) );
end % display()
function s = char(ekf)
%EKF.char Convert to string
%
% E.char() is a string representing the state of the EKF
% object in human-readable form.
%
% See also EKF.display.
s = sprintf('EKF object: %d states', length(ekf.x_est));
e = '';
if ekf.estVehicle
e = [e 'Vehicle '];
end
if ekf.estMap
e = [e 'Map '];
end
s = char(s, [' estimating: ' e]);
if ~isempty(ekf.robot)
s = char(s, char(ekf.robot));
end
if ~isempty(ekf.sensor)
s = char(s, char(ekf.sensor));
end
s = char(s, ['W_est: ' mat2str(ekf.W_est, 3)] );
s = char(s, ['V_est: ' mat2str(ekf.V_est, 3)] );
end
function T = transform(ekf, map)
mapPoints = map.map;
ekfPoints = zeros(2,map.nlandmarks);
for i=1:map.nlandmarks
n = ekf.landmarks(1,i);
% n is an index into the *landmark* part of the state
% vector, we need to offset it to account for the vehicle
% state if we are estimating vehicle as well
if ekf.estVehicle
n = n + 3;
end
ekfPoints(:,i) = ekf.x_est(n:n+1);
end
T_est = estimateGeometricTransform(mapPoints', ekfPoints', "similarity");
T = se2(T_est.T');
end
end % method
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% P R I V A T E M E T H O D S
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
methods (Access=protected)
function x_est = step(ekf, ~)
%fprintf('-------step\n');
% move the robot along its path and get odometry
odo = ekf.robot.step();
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% do the prediction
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if ekf.estVehicle
% split the state vector and covariance into chunks for
% vehicle and map
xv_est = ekf.x_est(1:3);
xm_est = ekf.x_est(4:end);
Pvv_est = ekf.P_est(1:3,1:3);
Pmm_est = ekf.P_est(4:end,4:end);
Pvm_est = ekf.P_est(1:3,4:end);
else
xm_est = ekf.x_est;
%Pvv_est = ekf.P_est;
Pmm_est = ekf.P_est;
end
if ekf.estVehicle
% evaluate the state update function and the Jacobians
% if vehicle has uncertainty, predict its covariance
xv_pred = ekf.robot.f(xv_est', odo)';
Fx = ekf.robot.Fx(xv_est, odo);
Fv = ekf.robot.Fv(xv_est, odo);
Pvv_pred = Fx*Pvv_est*Fx' + Fv*ekf.V_est*Fv';
else
% otherwise we just take the true robot state
xv_pred = ekf.robot.q(:);
end
if ekf.estMap
if ekf.estVehicle
% SLAM case, compute the correlations
Pvm_pred = Fx*Pvm_est;
end
Pmm_pred = Pmm_est;
xm_pred = xm_est;
end
% put the chunks back together again
if ekf.estVehicle && ~ekf.estMap
% vehicle only
x_pred = xv_pred;
P_pred = Pvv_pred;
elseif ~ekf.estVehicle && ekf.estMap
% map only
x_pred = xm_pred;
P_pred = Pmm_pred;
elseif ekf.estVehicle && ekf.estMap
% vehicle and map
x_pred = [xv_pred; xm_pred];
P_pred = [ Pvv_pred Pvm_pred; Pvm_pred' Pmm_pred];
end
% at this point we have:
% xv_pred the state of the vehicle to use to
% predict observations
% xm_pred the state of the map
% x_pred the full predicted state vector
% P_pred the full predicted covariance matrix
% initialize the variables that might be computed during
% the update phase
doUpdatePhase = false;
%fprintf('x_pred:'); x_pred'
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% process observations
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
sensorReading = false;
if ~isempty(ekf.sensor)
% read the sensor
[z,js] = ekf.sensor.reading();
% test if the sensor has returned a reading at this time interval
sensorReading = js > 0;
end
if sensorReading
% here for MBL, MM, SLAM
% compute the innovation
z_pred = ekf.sensor.h(xv_pred', js)';
innov(1) = z(1) - z_pred(1);
innov(2) = angdiff(z_pred(2), z(2));
if ekf.estMap
% the map is estimated MM or SLAM case
if ekf.seenBefore(js)
% get previous estimate of its state
jx = ekf.landmarks(1,js);
xf = xm_pred(jx:jx+1);
% compute Jacobian for this particular landmark
Hx_k = ekf.sensor.Hp(xv_pred', xf);
z_pred = ekf.sensor.h(xv_pred', xf);
innov(1) = z(1) - z_pred(1);
innov(2) = angdiff(z_pred(2), z(2));
% create the Jacobian for all landmarks
Hx = zeros(2, length(xm_pred));
Hx(:,jx:jx+1) = Hx_k;
Hw = ekf.sensor.Hw(xv_pred, xf);
if ekf.estVehicle
% concatenate Hx for for vehicle and map
Hxv = ekf.sensor.Hx(xv_pred', xf);
Hx = [Hxv Hx];
end
doUpdatePhase = true;
% if mod(i, 40) == 0
% plotellipse(x_est(jx:jx+1), P_est(jx:jx+1,jx:jx+1), 5);
% end
else
% get the extended state
[x_pred, P_pred] = ekf.extendMap(P_pred, xv_pred, xm_pred, z, js);
doUpdatePhase = false;
end
else
% the map is given, MBL case
Hx = ekf.sensor.Hx(xv_pred', js);
Hw = ekf.sensor.Hw(xv_pred', js);
doUpdatePhase = true;
end
end
% doUpdatePhase flag indicates whether or not to do
% the update phase of the filter
%
% DR always false
% map-based localization if sensor reading
% map creation if sensor reading & not first
% sighting
% SLAM if sighting of a previously
% seen landmark
if doUpdatePhase
%fprintf('do update\n');
%% we have innovation, update state and covariance
% compute x_est and P_est
% compute innovation covariance
S = Hx*P_pred*Hx' + Hw*ekf.W_est*Hw';
% compute the Kalman gain
K = P_pred*Hx' / S;
% update the state vector
x_est = x_pred + K*innov';
if ekf.estVehicle
% wrap heading state for a vehicle
x_est(3) = wrapToPi(x_est(3));
end
% update the covariance
if ekf.joseph
% we use the Joseph form
I = eye(size(P_pred));
Pest = (I-K*Hx)*P_pred*(I-K*Hx)' + K*ekf.W_est*K';
else
Pest = P_pred - K*S*K';
end
% enforce P to be symmetric
Pest = 0.5*(Pest+Pest');
else
% no update phase, estimate is same as prediction
x_est = x_pred;
Pest = P_pred;
innov = [];
S = [];
K = [];
end
%fprintf('X:'); x_est'
% update the state and covariance for next time
ekf.x_est = x_est;
ekf.P_est = Pest;
% record time history
if ekf.keepHistory
hist = [];
hist.x_est = x_est;
hist.odo = odo;
hist.P = Pest;
hist.innov = innov;
hist.S = S;
hist.K = K;
ekf.history = [ekf.history hist];
end
end
function s = seenBefore(ekf, jf)
if ~isnan(ekf.landmarks(1,jf))
%% we have seen this landmark before, update number of sightings
if ekf.verbose
fprintf('landmark %d seen %d times before, state_idx=%d\n', ...
jf, ekf.landmarks(2,jf), ekf.landmarks(1,jf));
end
ekf.landmarks(2,jf) = ekf.landmarks(2,jf)+1;
s = true;
else
s = false;
end
end
function [x_ext, P_ext] = extendMap(ekf, P, xv, xm, z, jf)
%% this is a new landmark, we haven't seen it before
% estimate position of landmark in the world based on
% noisy sensor reading and current vehicle pose
if ekf.verbose
fprintf('landmark %d first sighted\n', jf);
end
% estimate its position based on observation and vehicle state
xf = ekf.sensor.g(xv, z);
% append this estimate to the state vector
if ekf.estVehicle
x_ext = [xv; xm; xf];
else
x_ext = [xm; xf];
end
% get the Jacobian for the new landmark
Gz = ekf.sensor.Gz(xv, z);
% extend the covariance matrix
if ekf.estVehicle
Gx = ekf.sensor.Gx(xv, z);
n = length(ekf.x_est);
M = [eye(n) zeros(n,2); Gx zeros(2,n-3) Gz];
P_ext = M*blkdiag(P, ekf.W_est)*M';