Artificial Neural Networks Perceptrons Boolean Operation Perceptrons These perceptrons can be defined by the W and Θ values. Also note that there are multiple values of W and Θ that implement these operators. AND X1 X2 W1 W2 Θ Σ X*W Y AND 0 0 1 1 2 0 0 0 1 0 1 1 2 1 0 0 0 1 1 1 2 1 0 0 1 1 1 1 2 2 1 1 OR X1 X2 W1 W2 Θ Σ X*W Y OR 0 0 1 1 1 0 0 0 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 NOT X1 W1 Θ Σ X*W Y NOT 0 -1 0 0 1 1 1 -1 0 -1 0 0 XOR X1 X2 X3 (X1 AND X2) W1 W2 W3 Θ Σ X*W Y XOR 0 0 0 1 1 -2 1 0 0 0 1 0 0 1 1 -2 1 1 1 1 0 1 0 1 1 -2 1 1 1 1 1 1 1 1 1 -2 1 0 0 0 Perceptron Training Rule Gradient Descent Rule Comparison of Learning Rules Sigmoid Neural Network Sketch / Backpropagation Optimizing Weights Restriction Bias Preference Bias Summary