-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmodels.py
101 lines (83 loc) · 3.5 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
import torch
class FullyConnectedNetwork(torch.nn.Module):
def __init__(
self, input_size, layers_sizes, output_size, activation=torch.nn.Tanh(), conv_layers=0
):
super(FullyConnectedNetwork, self).__init__()
layers_sizes.insert(0, input_size)
layers = []
if len(layers_sizes) > 1:
for i in range(len(layers_sizes) - 1):
layers.extend(
[
torch.nn.Linear(layers_sizes[i], layers_sizes[i + 1]),
torch.nn.ReLU(),
]
)
layers.append(torch.nn.Linear(layers_sizes[-1], output_size))
if activation:
layers.append(activation)
self.layers = torch.nn.ModuleList(layers)
def forward(self, x):
for layer in self.layers:
x = layer(x)
return x
class SafelifeConvNetork(torch.nn.Module):
"This is hardcoded due to artistic disagreements with this codebase's layout :)"
def __init__(self):
layer1 = torch.nn.Conv2D
def forward(self, x):
# TODO: unified residual network
class MuZeroNetwork(torch.nn.Module):
def __init__(self, observation_size, action_space_size, encoding_size, hidden_size):
super().__init__()
self.action_space_size = action_space_size
self.representation_network = FullyConnectedNetwork(
observation_size, [], encoding_size
)
self.dynamics_encoded_state_network = FullyConnectedNetwork(
encoding_size + self.action_space_size, [hidden_size], encoding_size
)
self.dynamics_reward_network = FullyConnectedNetwork(
encoding_size + self.action_space_size, [hidden_size], 1
)
self.prediction_policy_network = FullyConnectedNetwork(
encoding_size, [], self.action_space_size, activation=None
)
self.prediction_value_network = FullyConnectedNetwork(
encoding_size, [], 1, activation=None
)
def prediction(self, encoded_state):
policy_logit = self.prediction_policy_network(encoded_state)
value = self.prediction_value_network(encoded_state)
return policy_logit, value
def representation(self, observation):
return self.representation_network(observation)
def dynamics(self, encoded_state, action):
action_one_hot = (
torch.zeros((action.shape[0], self.action_space_size))
.to(action.device)
.float()
)
action_one_hot.scatter_(1, action.long(), 1.0)
x = torch.cat((encoded_state, action_one_hot), dim=1)
next_encoded_state = self.dynamics_encoded_state_network(x)
reward = self.dynamics_reward_network(x)
return next_encoded_state, reward
def initial_inference(self, observation):
encoded_state = self.representation(observation)
policy_logit, value = self.prediction(encoded_state)
return (
value,
torch.zeros(len(observation)).to(observation.device),
policy_logit,
encoded_state,
)
def recurrent_inference(self, encoded_state, action):
next_encoded_state, reward = self.dynamics(encoded_state, action)
policy_logit, value = self.prediction(next_encoded_state)
return value, reward, policy_logit, next_encoded_state
def get_weights(self):
return {key: value.cpu() for key, value in self.state_dict().items()}
def set_weights(self, weights):
self.load_state_dict(weights)