-
Notifications
You must be signed in to change notification settings - Fork 42
/
Copy pathconll-ner.lua
248 lines (225 loc) · 8.79 KB
/
conll-ner.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
require 'torch'
require 'optim'
cmd = torch.CmdLine()
cmd:option('-cuda', false,'whether to use gpu')
-- data file locations
cmd:option('-train', 'data/conll2003/eng.train.torch','torch format train file list')
cmd:option('-test', 'data/conll2003/eng.testa.torch','torch format test file list')
cmd:option('-loadEmbeddings', '', 'file containing serialized torch embeddings')
cmd:option('-saveModel', '', 'file to save the trained model to')
cmd:option('-labelMap', 'data/conll2003/label-map.index','file containing map from label strings to index. needed for entity level evaluation')
-- model / data sizes
cmd:option('-labelDim', 8,'label dimension')
cmd:option('-embeddingDim', 64,'embedding dimension')
cmd:option('-hiddenDim', 300,'hidden layer dimension')
cmd:option('-vocabSize', 100004,'vocabulary size')
cmd:option('-sentenceLength', 5,'length of input sequences')
cmd:option('-batchSize', 64,'minibatch size')
-- optimization
cmd:option('-learningRate', 0.01, 'init learning rate')
cmd:option('-tanh', false, 'use tanh layer, hardTanh otherwise')
cmd:option('-adagrad', false, 'use adagrad to optimize, sgd otherwise')
cmd:option('-hinge', false, 'use hinge loss while training, nll otherwise')
cmd:option('-stopEarly', false, 'stop training early if evaluation F1 goes down')
cmd:option('-numEpochs', 5, 'number of epochs to train for')
cmd:option('-evaluateFrequency', 5, 'number of epochs to train for')
local params = cmd:parse(arg)
if(params.cuda) then
require 'cunn'
print('using GPU')
else
require 'nn'
print ('using CPU')
end
local function toCuda(x) return params.cuda and x:cuda() or x end
--- data parameters
local train_file = params.train
local test_file = params.test
local sentenceLength = params.sentenceLength
local vocabSize = params.vocabSize
local train = torch.load(train_file)
--- model parameters
local embeddingDim = params.embeddingDim
local hiddenUnits = params.hiddenDim
local numClasses = params.labelDim
local concatDim = embeddingDim * sentenceLength
--- optimization parameters
local optConfig = {
-- learningRateDecay = params.learningRateDecay,
-- momentum = useMomentum,
-- dampening = dampening,
}
local optState = {}
local optimMethod = params.adagrad and optim.adagrad or optim.sgd
local numEpochs = params.numEpochs
local numBatches = math.floor(train.data:size(1)/params.batchSize)
---- preload embeddings if specified ----
local lookupTable = nn.LookupTable(vocabSize,embeddingDim)
if params.loadEmbeddings ~= '' then
print('preloading embeddings from ' .. params.loadEmbeddings)
local data = torch.load(params.loadEmbeddings)
vocabSize = data.data:size(1)
embeddingDim = data.data:size(2)
lookupTable = nn.LookupTable(vocabSize,embeddingDim)
lookupTable.weight = data.data
end
---- setup network from nlp afs ----
local net = nn.Sequential()
net:add(lookupTable)
net:add(nn.Reshape(concatDim))
net:add(nn.Linear(concatDim, hiddenUnits))
if params.tanh then net:add(nn.Tanh()) else net:add(nn.HardTanh()) end
net:add(nn.Linear(hiddenUnits, numClasses))
net:add(nn.LogSoftMax())
local criterion = params.hinge and nn.MultiMarginCriterion() or nn.ClassNLLCriterion()
toCuda(criterion)
toCuda(net)
--- Evaluate ---
local function predict(sample)
local pred = net:forward(sample)
-- find the label with the max score
local max_prob = -math.huge
local max_index = -math.huge
for c = 1, numClasses
do
if pred[c] > max_prob then
max_prob = pred[c]
max_index = c
end
end
return max_index
end
--- evaluate scores by chunking entities with BIO tags
local function evaluate()
local label_index_str_map = {}
local label_str_index_map = {}
for line in io.lines(params.labelMap) do
local label_string, label_index = string.match(line, "([^\t]+)\t([^\t]+)")
label_index_str_map[tonumber(label_index)] = label_string
label_str_index_map[label_string] = tonumber(label_index)
end
local O_index = label_str_index_map["O"]
print ('Evaluating')
local test = torch.load(test_file)
local tp = 0
local fp = 0
local tn = 0
local fn = 0
local i = 1
while (i <test.labels:size()[1])
do
local s = toCuda(test.data:select(1, i))
local l = test.labels:select(1, i)
i = i + 1
-- O, just score
if (l == O_index) then
if predict(s) == l then tn = tn + 1 else fp = fp + 1 end
else
-- score the entire entity
local correct = true
if predict(s) ~= l then correct = false end
local last_l = l
-- replace B-* tags with I-* since they are only important for delimeting
if (string.sub(label_index_str_map[l], 1, 1) == 'B') then
local last_l = label_str_index_map[label_index_str_map[l]:gsub("^%l", 'I')]
end
s = toCuda(test.data:select(1, i))
l = test.labels:select(1, i)
-- while this token is still part of the current entity
while (last_l == l) do
if predict(s) ~= l then correct = false end
i = i + 1
s = toCuda(test.data:select(1, i))
l = test.labels:select(1, i)
end
if correct then tp = tp + 1 else fn = fn + 1 end
end
end
local precision = tp / (tp + fp)
local recall = tp / (tp + fn)
local f1 = 2 * ((precision * recall) / (precision + recall))
print(string.format('F1 : %f\t Recall : %f\tPrecision : %f', f1, recall, precision))
return f1
end
local function evaluate_per_token()
print ('Evaluating per token accuracy')
local test = torch.load(test_file)
local tp = 0
local fp = 0
local tn = 0
local fn = 0
for i = 1, test.labels:size()[1]
do
-- get a score for each label on this sample
local sample = toCuda(test.data:select(1, i))
local label = test.labels:select(1, i)
local max_index = predict(sample)
-- update counts
if label == 1 and max_index == label then tn = tn + 1 end
if label == 1 and max_index ~= label then fp = fp + 1 end
if label ~= 1 and max_index == label then tp = tp + 1 end
if label ~= 1 and max_index == 1 then fn = fn + 1 end
end
local precision = tp / (tp + fp)
local recall = tp / (tp + fn)
local f1 = 2 * ((precision * recall) / (precision + recall))
print(string.format('F1 : %f\t Recall : %f\tPrecision : %f', f1, recall, precision))
return f1
end
--- Train ---
local function train_model()
--- split training data into batches
local data_batches = {}
local label_batches = {}
local start = 1
while start <= train.labels:size(1) do
local size = math.min(params.batchSize, train.labels:size(1) - start + 1)
table.insert(label_batches, toCuda(train.labels:narrow(1, start, size)))
table.insert(data_batches, toCuda(train.data:narrow(1, start, size)))
start = start + size
end
local parameters, gradParameters = net:getParameters()
local last_f1 = 0.0
for epoch = 1, numEpochs
do
-- randomly shuffle mini batches
local shuffle = torch.randperm(numBatches)
local epoch_error = 0
local startTime = sys.clock()
io.write('Starting epoch ', epoch, ' of ', numEpochs, '\n')
for i = 1, numBatches
do
local idx = shuffle[i]
local sentences = data_batches[idx]
local labels = label_batches[idx]
-- update function
local function fEval(x)
if parameters ~= x then parameters:copy(x) end
net:zeroGradParameters()
local output = net:forward(sentences)
local err = criterion:forward(output,labels)
local df_do = criterion:backward(output, labels)
net:backward(sentences, df_do)
epoch_error = epoch_error+err
return err, gradParameters
end
-- update gradients
optimMethod(fEval, parameters, optConfig, optState)
if(i % 50 == 0) then
io.write(string.format('\r%.3f percent complete\tspeed = %.2f examples/sec',
i/(numBatches), (i*params.batchSize)/(sys.clock() - startTime)))
io.flush()
end
end
print(string.format('\nEpoch error = %f', epoch_error))
if (epoch % params.evaluateFrequency == 0 or epoch == params.numEpochs) then
local f1 = evaluate()
-- end training early if f1 goes down
if params.stopEarly and f1 < last_f1 then break else last_f1 = f1 end
-- save the trained model if location specified
if params.saveModel ~= '' then torch.save(params.saveModel, net) end
end
end
if params.saveModel ~= '' then torch.save(params.saveModel, net) end
end
train_model()