forked from maziarraissi/FBSNNs
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathHamiltonJacobiBellman100D.py
executable file
·112 lines (82 loc) · 3.48 KB
/
HamiltonJacobiBellman100D.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
"""
@author: Maziar Raissi
"""
import numpy as np
#import tensorflow as tf
import tensorflow.compat.v1 as tf
tf.disable_v2_behavior()
from FBSNNs import FBSNN
import matplotlib.pyplot as plt
from plotting import newfig, savefig
class HamiltonJacobiBellman(FBSNN):
def __init__(self, Xi, T,
M, N, D,
layers):
super().__init__(Xi, T,
M, N, D,
layers)
def phi_tf(self, t, X, Y, Z): # M x 1, M x D, M x 1, M x D
return tf.reduce_sum(Z**2, 1, keepdims = True) # M x 1
def g_tf(self, X): # M x D
return tf.log(0.5 + 0.5*tf.reduce_sum(X**2, 1, keepdims = True)) # M x 1
def mu_tf(self, t, X, Y, Z): # M x 1, M x D, M x 1, M x D
return super().mu_tf(t, X, Y, Z) # M x D
def sigma_tf(self, t, X, Y): # M x 1, M x D, M x 1
return tf.sqrt(2.0)*super().sigma_tf(t, X, Y) # M x D x D
###########################################################################
if __name__ == "__main__":
M = 100 # number of trajectories (batch size)
N = 50 # number of time snapshots
D = 100 # number of dimensions
layers = [D+1] + 4*[256] + [1]
Xi = np.zeros([1,D])
T = 1.0
# Training
model = HamiltonJacobiBellman(Xi, T,
M, N, D,
layers)
model.train(N_Iter = 10**3, learning_rate=1e-3)
# model.train(N_Iter = 3*10**4, learning_rate=1e-4)
# model.train(N_Iter = 3*10**4, learning_rate=1e-5)
# model.train(N_Iter = 2*10**4, learning_rate=1e-6)
# t_test, W_test = model.fetch_minibatch_no_noise()
t_test, W_test = model.fetch_minibatch()
X_pred, Y_pred, Z_pred = model.predict(Xi, t_test, W_test)
def g(X): # MC x NC x D
return np.log(0.5 + 0.5*np.sum(X**2, axis=2, keepdims=True)) # MC x N x 1
def u_exact(t, X): # NC x 1, NC x D
MC = 10**5
NC = t.shape[0]
W = np.random.normal(size=(MC,NC,D)) # MC x NC x D
return -np.log(np.mean(np.exp(-g(X + np.sqrt(2.0*np.abs(T-t))*W)),axis=0))
Y_test = u_exact(t_test[0,:,:], X_pred[0,:,:])
Y_test_terminal = np.log(0.5 + 0.5*np.sum(X_pred[:,-1,:]**2, axis=1, keepdims=True))
plt.figure(1)
plt.plot(t_test[0:1,:,0].T,Y_pred[0:1,:,0].T,'b',label='Learned $u(t,X_t)$')
#plt.plot(t_test[1:5,:,0].T,Y_pred[1:5,:,0].T,'b')
plt.plot(t_test[0,:,0].T,Y_test[:,0].T,'r--',label='Exact $u(t,X_t)$')
plt.plot(t_test[0:1,-1,0],Y_test_terminal[0:1,0],'ks',label='$Y_T = u(T,X_T)$')
#plt.plot(t_test[1:5,-1,0],Y_test_terminal[1:5,0])
plt.plot([0],Y_test[0,0],'ko',label='$Y_0 = u(0,X_0)$')
plt.xlabel('$t$')
plt.ylabel('$Y_t = u(t,X_t)$')
plt.title('100-dimensional Hamilton-Jacobi-Bellman')
plt.legend()
plt.show()
# savefig('./figures/HJB_new', crop = False)
plt.figure(2)
plt.plot(t_test[0:1,:,0].T,Z_pred[0:1,:,0].T,'b',label='Learned $Du(t,X_t)$')
plt.xlabel('$t$')
plt.ylabel('$Z_t = Du(t,X_t)$')
plt.title('100-dimensional Hamilton-Jacobi-Bellman')
plt.legend()
plt.show()
errors = np.sqrt((Y_test-Y_pred[0,:,:])**2/Y_test**2)
plt.figure(3)
plt.plot(t_test[0,:,0],errors,'b')
plt.xlabel('$t$')
plt.ylabel('relative error')
plt.title('100-dimensional Hamilton-Jacobi-Bellman')
# plt.legend()
plt.show()
# savefig('./figures/HJB_new_errors', crop = False)