-
Notifications
You must be signed in to change notification settings - Fork 23
/
Copy pathrollouts.py
217 lines (191 loc) · 9.77 KB
/
rollouts.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
from collections import deque, defaultdict
import numpy as np
from mpi4py import MPI
from recorder import Recorder
class Rollout(object):
def __init__(self, ob_space, ac_space, nenvs, nsteps_per_seg, nsegs_per_env, nlumps, envs, policy,
int_rew_coeff, ext_rew_coeff, record_rollouts, dynamics_list):
self.nenvs = nenvs
self.nsteps_per_seg = nsteps_per_seg
self.nsegs_per_env = nsegs_per_env
self.nsteps = self.nsteps_per_seg * self.nsegs_per_env
self.ob_space = ob_space
self.ac_space = ac_space
self.nlumps = nlumps
self.lump_stride = nenvs // self.nlumps
self.envs = envs
self.policy = policy
self.dynamics_list = dynamics_list
self.reward_fun = lambda ext_rew, int_rew: ext_rew_coeff * np.clip(ext_rew, -1., 1.) + int_rew_coeff * int_rew
self.buf_vpreds = np.empty((nenvs, self.nsteps), np.float32)
self.buf_nlps = np.empty((nenvs, self.nsteps), np.float32)
self.buf_rews = np.empty((nenvs, self.nsteps), np.float32)
self.buf_ext_rews = np.empty((nenvs, self.nsteps), np.float32)
self.buf_acs = np.empty((nenvs, self.nsteps, *self.ac_space.shape), self.ac_space.dtype)
self.buf_obs = np.empty((nenvs, self.nsteps, *self.ob_space.shape), self.ob_space.dtype)
self.buf_obs_last = np.empty((nenvs, self.nsegs_per_env, *self.ob_space.shape), np.float32)
self.buf_news = np.zeros((nenvs, self.nsteps), np.float32)
self.buf_new_last = self.buf_news[:, 0, ...].copy()
self.buf_vpred_last = self.buf_vpreds[:, 0, ...].copy()
self.env_results = [None] * self.nlumps
# self.prev_feat = [None for _ in range(self.nlumps)]
# self.prev_acs = [None for _ in range(self.nlumps)]
self.int_rew = np.zeros((nenvs,), np.float32)
self.recorder = Recorder(nenvs=self.nenvs, nlumps=self.nlumps) if record_rollouts else None
self.statlists = defaultdict(lambda: deque([], maxlen=100))
self.stats = defaultdict(float)
self.best_ext_ret = None
self.all_visited_rooms = []
self.all_scores = []
self.step_count = 0
def collect_rollout(self):
self.ep_infos_new = []
for t in range(self.nsteps):
self.rollout_step()
self.calculate_reward()
self.update_info()
def calculate_reward(self):
int_rew = []
if self.dynamics_list[0].var_output:
net_output = []
for dynamics in self.dynamics_list:
net_output.append(dynamics.calculate_loss(ob=self.buf_obs,
last_ob=self.buf_obs_last,
acs=self.buf_acs))
# cal variance along first dimension .. [n_dyna, n_env, n_step, feature_size]
# --> [n_env, n_step,feature_size]
var_output = np.var(net_output, axis=0)
# cal reward by mean along second dimension .. [n_env, n_step, feature_size] --> [n_env, n_step]
var_rew = np.mean(var_output, axis=-1)
else:
for dynamics in self.dynamics_list:
int_rew.append(dynamics.calculate_loss(ob=self.buf_obs,
last_ob=self.buf_obs_last,
acs=self.buf_acs))
# calculate the variance of the rew
var_rew = np.var(int_rew, axis=0)
self.buf_rews[:] = self.reward_fun(int_rew=var_rew, ext_rew=self.buf_ext_rews)
def rollout_step(self):
t = self.step_count % self.nsteps
s = t % self.nsteps_per_seg
for l in range(self.nlumps):
obs, prevrews, news, infos = self.env_get(l)
# if t > 0:
# prev_feat = self.prev_feat[l]
# prev_acs = self.prev_acs[l]
for info in infos:
epinfo = info.get('episode', {})
mzepinfo = info.get('mz_episode', {})
retroepinfo = info.get('retro_episode', {})
unityepinfo = info.get("unity_episode", {})
epinfo.update(unityepinfo)
epinfo.update(mzepinfo)
epinfo.update(retroepinfo)
if epinfo:
if "n_states_visited" in info:
epinfo["n_states_visited"] = info["n_states_visited"]
epinfo["states_visited"] = info["states_visited"]
if "unity_rooms" in info:
epinfo["unity_rooms"] = info["unity_rooms"]
self.ep_infos_new.append((self.step_count, epinfo))
sli = slice(l * self.lump_stride, (l + 1) * self.lump_stride)
acs, vpreds, nlps = self.policy.get_ac_value_nlp(obs)
self.env_step(l, acs)
# self.prev_feat[l] = dyn_feat
# self.prev_acs[l] = acs
self.buf_obs[sli, t] = obs
self.buf_news[sli, t] = news
self.buf_vpreds[sli, t] = vpreds
self.buf_nlps[sli, t] = nlps
self.buf_acs[sli, t] = acs
if t > 0:
self.buf_ext_rews[sli, t - 1] = prevrews
# if t > 0:
# dyn_logp = self.policy.call_reward(prev_feat, pol_feat, prev_acs)
#
# int_rew = dyn_logp.reshape(-1, )
#
# self.int_rew[sli] = int_rew
# self.buf_rews[sli, t - 1] = self.reward_fun(ext_rew=prevrews, int_rew=int_rew)
if self.recorder is not None:
self.recorder.record(timestep=self.step_count, lump=l, acs=acs, infos=infos, int_rew=self.int_rew[sli],
ext_rew=prevrews, news=news)
self.step_count += 1
if s == self.nsteps_per_seg - 1:
for l in range(self.nlumps):
sli = slice(l * self.lump_stride, (l + 1) * self.lump_stride)
nextobs, ext_rews, nextnews, _ = self.env_get(l)
self.buf_obs_last[sli, t // self.nsteps_per_seg] = nextobs
if t == self.nsteps - 1:
self.buf_new_last[sli] = nextnews
self.buf_ext_rews[sli, t] = ext_rews
_, self.buf_vpred_last[sli], _ = self.policy.get_ac_value_nlp(nextobs)
# dyn_logp = self.policy.call_reward(self.prev_feat[l], last_pol_feat, prev_acs)
# dyn_logp = dyn_logp.reshape(-1, )
# int_rew = dyn_logp
#
# self.int_rew[sli] = int_rew
# self.buf_rews[sli, t] = self.reward_fun(ext_rew=ext_rews, int_rew=int_rew)
def update_info(self):
all_ep_infos = MPI.COMM_WORLD.allgather(self.ep_infos_new)
all_ep_infos = sorted(sum(all_ep_infos, []), key=lambda x: x[0])
if all_ep_infos:
all_ep_infos = [i_[1] for i_ in all_ep_infos] # remove the step_count
keys_ = all_ep_infos[0].keys()
all_ep_infos = {k: [i[k] for i in all_ep_infos] for k in keys_}
self.statlists['eprew'].extend(all_ep_infos['r'])
self.stats['eprew_recent'] = np.mean(all_ep_infos['r'])
self.statlists['eplen'].extend(all_ep_infos['l'])
self.stats['epcount'] += len(all_ep_infos['l'])
self.stats['tcount'] += sum(all_ep_infos['l'])
if 'visited_rooms' in keys_:
# Montezuma specific logging.
self.stats['visited_rooms'] = sorted(list(set.union(*all_ep_infos['visited_rooms'])))
self.stats['pos_count'] = np.mean(all_ep_infos['pos_count'])
self.all_visited_rooms.extend(self.stats['visited_rooms'])
self.all_scores.extend(all_ep_infos["r"])
self.all_scores = sorted(list(set(self.all_scores)))
self.all_visited_rooms = sorted(list(set(self.all_visited_rooms)))
if MPI.COMM_WORLD.Get_rank() == 0:
print("All visited rooms")
print(self.all_visited_rooms)
print("All scores")
print(self.all_scores)
if 'levels' in keys_:
# Retro logging
temp = sorted(list(set.union(*all_ep_infos['levels'])))
self.all_visited_rooms.extend(temp)
self.all_visited_rooms = sorted(list(set(self.all_visited_rooms)))
if MPI.COMM_WORLD.Get_rank() == 0:
print("All visited levels")
print(self.all_visited_rooms)
if "unity_rooms" in keys_:
#Unity logging.
temp = sorted(list(set.union(*all_ep_infos['unity_rooms'])))
self.all_visited_rooms.extend(temp)
self.all_visited_rooms = sorted(list(set(self.all_visited_rooms)))
self.stats["n_rooms"] = len(self.all_visited_rooms)
if MPI.COMM_WORLD.Get_rank() == 0:
print("All visited levels")
print(self.all_visited_rooms)
current_max = np.max(all_ep_infos['r'])
else:
current_max = None
self.ep_infos_new = []
if current_max is not None:
if (self.best_ext_ret is None) or (current_max > self.best_ext_ret):
self.best_ext_ret = current_max
self.current_max = current_max
def env_step(self, l, acs):
self.envs[l].step_async(acs)
self.env_results[l] = None
def env_get(self, l):
if self.step_count == 0:
ob = self.envs[l].reset()
out = self.env_results[l] = (ob, None, np.ones(self.lump_stride, bool), {})
else:
if self.env_results[l] is None:
out = self.env_results[l] = self.envs[l].step_wait()
else:
out = self.env_results[l]
return out