-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathengine_pretrain.py
119 lines (90 loc) · 4.68 KB
/
engine_pretrain.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
# --------------------------------------------------------
# References:
# DeiT: https://github.com/facebookresearch/deit
# BEiT: https://github.com/microsoft/unilm/tree/master/beit
# --------------------------------------------------------
import math
import sys
from typing import Iterable
import torch
import utils.misc as misc
import utils.lr_sched as lr_sched
from adap_weight import aw_loss
from utils.misc import plot_reconstruction
def train_one_epoch(model: torch.nn.Module,
data_loader: Iterable, optimizer: torch.optim.Optimizer,
device: torch.device, epoch: int, loss_scaler,
log_writer=None,
args=None):
model.train(True)
metric_logger = misc.MetricLogger(delimiter=" ")
metric_logger.add_meter('lr', misc.SmoothedValue(window_size=1, fmt='{value:.6f}'))
header = 'Epoch: [{}]'.format(epoch)
print_freq = 20
accum_iter = args.accum_iter
optimizer.zero_grad()
if log_writer is not None:
print('log_dir: {}'.format(log_writer.log_dir))
for data_iter_step, (samples,_) in enumerate(data_loader):
# we use a per iteration (instead of per epoch) lr scheduler
if data_iter_step % accum_iter == 0:
lr_sched.adjust_learning_rate(optimizer, data_iter_step / len(data_loader) + epoch, args)
if args.cuda is not None:
# with torch.cuda.amp.autocast():
mae_loss, pred, mask, disc_loss, adv_loss, currupt_img = model(samples.to(device), mask_ratio=args.mask_ratio)
else:
mae_loss, pred, mask, disc_loss, adv_loss, currupt_img = model(samples, mask_ratio=args.mask_ratio)
# print(model.parameters())
gen_loss = aw_loss(mae_loss, adv_loss, optimizer, model)
# print(gen_loss)
gen_loss_value = gen_loss.item()
if not math.isfinite(gen_loss_value):
print("Loss is {}, stopping training".format(gen_loss_value))
sys.exit(1)
gen_loss = gen_loss/accum_iter
loss_scaler(gen_loss, optimizer, parameters=model.parameters(),
update_grad=(data_iter_step + 1) % accum_iter == 0, retain_graph = True)
if (data_iter_step + 1) % accum_iter == 0:
optimizer.zero_grad()
mae_loss, pred, mask, disc_loss, adv_loss, currupt_img = model(samples.to(device), mask_ratio=args.mask_ratio)
disc_loss_value = disc_loss.item()
mae_loss_value = mae_loss.item()
if not math.isfinite(disc_loss_value):
print("Loss is {}, stopping training".format(disc_loss_value))
sys.exit(1)
disc_loss = disc_loss/accum_iter
mae_loss = mae_loss/accum_iter
loss_scaler(disc_loss, optimizer, parameters=model.parameters(),
update_grad=(data_iter_step + 1) % accum_iter == 0, retain_graph = True)
if (data_iter_step + 1) % accum_iter == 0:
optimizer.zero_grad()
if args.cuda is not None:
torch.cuda.synchronize()
metric_logger.update(disc_loss=disc_loss_value)
metric_logger.update(gen_loss=gen_loss_value)
metric_logger.update(mae_loss=mae_loss_value)
lr = optimizer.param_groups[0]["lr"]
metric_logger.update(lr=lr)
disc_loss_value_reduce = misc.all_reduce_mean(disc_loss_value)
gen_loss_value_reduce = misc.all_reduce_mean(gen_loss_value)
mae_loss_value_reduce = misc.all_reduce_mean(mae_loss_value)
if log_writer is not None and (data_iter_step + 1) % accum_iter == 0:
""" We use epoch_1000x as the x-axis in tensorboard.
This calibrates different curves when batch size changes.
"""
epoch_1000x = int((data_iter_step / len(data_loader) + epoch) * 1000)
log_writer.add_scalar('disc_train_loss', disc_loss_value_reduce, epoch_1000x)
log_writer.add_scalar('gen_train_loss', gen_loss_value_reduce, epoch_1000x)
log_writer.add_scalar('mae_loss', mae_loss_value_reduce, epoch_1000x)
log_writer.add_scalar('lr', lr, epoch_1000x)
log_writer.add_figure('Reconstructed vs. actuals',
plot_reconstruction(currupt_img, samples),
global_step=epoch * len(data_loader) + data_iter_step)
# gather the stats from all processes
metric_logger.synchronize_between_processes()
print("Averaged stats:", metric_logger)
return {k: meter.global_avg for k, meter in metric_logger.meters.items()}