-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy path3_component_mixture.R
189 lines (153 loc) · 4.89 KB
/
3_component_mixture.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
# Finite mixture with 3 components and Normal priors
library(rstan)
library(shinystan)
library(MASS)
options(mc.cores = parallel::detectCores())
### The STAN model ###
rstan_options(auto_write = TRUE)
set.seed(689934)
df = read.csv("~/data.csv", header = TRUE, sep = "\t")
summary(df)
lmod = lm(df$Y ~ ., data = df)
summary(lmod)
par(mfrow = c(2,2))
plot(lmod)
par(mfrow = c(1,1))
r = residuals(lmod)
#plot(density((r-mean(r))/sqrt(var(r))), xlim=range(c(-3,3)), ylim=range(c(0,0.4)))
plot(density(r))
N <- length(df$Y)
y <- df$Y
x1 <- df$var1
x2 <- df$var2
x3 <- df$var3
K <- 3
#theta <- c(1/3, 1/3, 1/3)
#sigma <- c(1.433017, 1.013836, 0.9755867)
#sigma <- c(1.4, 1, .98)
#sigma <- 0.1
X <- cbind(Const = 1, X1 = x1, X2 = x2, X3 = x3)
J <- ncol(X)
# Prepare the data we'll need as a list
stan_data <- list(y = y, N = N, J = J, K = K, X = X)
stan_code <- '
data {
int<lower = 1> N; // integer, number of observations
int<lower = 1> J; // integer, number of columns in model matrix
int<lower = 1> K;
matrix[N,J] X ; // N by J model matrix
vector[N] y;
}
parameters {
vector<lower=0>[K] sigma;
ordered[K] mu;
real<lower=0> tao ; // real number > 0, standard deviation
vector[J] beta ; // J-vector of regression coefficients
simplex[K] theta;
}
model {
vector[K] log_theta = log(theta);
sigma[1] ~ cauchy(1,.1);
sigma[2] ~ cauchy(1,.1);
sigma[3] ~ cauchy(1,.1);
mu[1] ~ normal(-0.06782,.1);
mu[2] ~ normal(0.01622,.1);
mu[3] ~ normal(4.895,.1);
beta ~ normal(0, 5) ; // prior for betas
tao ~ cauchy(1, 0.1) ; // prior for y sigma
y ~ normal(X*beta, tao) ; // vectorized likelihood
for (n in 1:N) {
vector[K] lps = log_theta;
for (k in 1:K)
lps[k] +=normal_lpdf(y[n] | mu[k], sigma[k]);
//lps[k] +=lognormal_lpdf(y[n] | mu[k], sigma[k]);
//lps[k] +=student_t_lpdf(y[n] | 117, mu[k], sigma[k]);
target += log_sum_exp(lps);
}
}
generated quantities{
vector[N] y_rep ; // vector of same length as the data y
vector[N] y_rep_reg ; // vector of same length as the data y
vector[N] y_rep_normal;
vector[N] y_rep_err;
vector[N] y_gam;
vector[K] log_theta = log(theta);
{
for (n in 1:N) {
vector[K] lps = log_theta;
for (k in 1:K)
lps[k] =normal_lpdf(y[n] | X[n]*beta, tao);
y_rep[n] = log_sum_exp(lps);
}
for (n in 1:N) {
y_rep_normal[n] = normal_rng(X[n]*beta, tao);
y_rep_reg[n] = X[n]*beta;
y_rep_err[n] = X[n]*beta + normal_rng(0, tao);
y_gam[n] = gamma_rng(20,1);
}
}
}
'
degenerate_fit <- stan(model_code = stan_code, data=stan_data, iter=10000, chains=4, seed=483892929, refresh=2000)
plot(degenerate_fit, show_density = TRUE, ci_level = 0.5, fill_color = "purple")
#pairs(degenerate_fit)
pairs(df)
print(degenerate_fit)
summary(degenerate_fit)
get_posterior_mean(degenerate_fit)
#get_logposterior(degenerate_fit)
posterior <- extract(degenerate_fit, include = T)
mean(apply(posterior$y_rep_reg, 2, median) == y)
mean(posterior$y_rep_reg[,1] == y)
truehist(posterior$y_rep_reg[2,])
truehist(y, col="#B2001D")
lines(density(y), col="skyblue", lwd=2)
summary(y)
truehist(posterior$y_rep_reg, 50, col="#B2001D")
lines(density(posterior$y_rep_reg), col="skyblue", lwd=2)
lines(density(y), col="green", lwd=2)
summary(posterior$y_rep_reg[,1])
mean(posterior$y_rep_reg)
mean(df$Y)
truehist(posterior$y_rep_normal[,3],col="#B2001D", main="Posterior Predictive", xlab="y_rep_normal ~ N(X*beta, tao)")
lines(density(posterior$y_rep_normal[13873,]), col="skyblue", lwd=2)
lines(density(posterior$y_rep_normal), col="skyblue", lwd=2)
lines(density(y), col="green", lwd=2)
summary(posterior$y_rep_normal[,1])
#plot(posterior$y_rep_normal[3,])
truehist(posterior$y_rep[,2], col="#B2001D")
lines(density(posterior$y_rep), col="skyblue", lwd=2)
lines(density(y), col="green", lwd=2)
summary(posterior$y_rep[1,])
truehist(posterior$y_rep_err[,3], col="#B2001D", main="Posterior Predictive 2", xlab="y_rep_err ~ X*beta + N(0, tao)")
lines(density(posterior$y_rep_err), col="blue", lwd=2)
lines(density(posterior$y_rep_err[7873,]), col="skyblue", lwd=2)
lines(density(posterior$y_rep_err[19326,]), col="skyblue", lwd=2)
lines(density(y), col="green", lwd=2)
summary(posterior$y_rep_err[,8])
mseNomral = mean((df$Y - posterior$y_rep_normal)^2)
mseNormal
mseErr = mean((df$Y - posterior$y_rep_err)^2)
mseErr
truehist(y, col="#B2001D")
lines(density(y), col="skyblue", lwd=2)
summary(y)
truehist(x1, col="#C2001D")
lines(density(x1), col="skyblue", lwd=2)
summary(x1)
truehist(x2, col="#B97C7CBF")
lines(density(x2), col="skyblue", lwd=2)
summary(x2)
truehist(x3, col="#7C0000BF")
lines(density(x3), col="skyblue", lwd=2)
summary(x3)
launch_shinystan(degenerate_fit)
# New sampling and fitting
s_model = stan_model(model_code = stan_code)
fit <- sampling(s_model, data = stan_data)
summary(fit)
get_posterior_mean(fit)
vb_fit = vb(s_model, data=stan_data, iter=10000)
m <- stan_model(model_code = stan_code)
f <- optimizing(m, hessian = TRUE)
f