-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdocument_mia.py
450 lines (375 loc) · 19.2 KB
/
document_mia.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
# %%
import logging
logging.basicConfig(level='ERROR')
import argparse
import glob
import json
import os
import random
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import torch
import torch.nn as nn
import torch.optim as optim
from datasets import load_from_disk
from scipy.stats import mannwhitneyu
from sklearn.metrics import (classification_report, roc_auc_score,
roc_curve)
from torch.utils.data import DataLoader, TensorDataset
# %%
def combinations(list_items, num_combinations, num_groups):
list_items_idx = list(range(len(list_items)))
combinations = set()
while len(combinations) < num_combinations:
list_idx = random.sample(range(len(list_items_idx)), num_groups)
combinations.add(tuple(list_idx))
combinations_items = []
for combination in combinations:
combination_items = []
for idx in combination:
combination_items.append(list_items[idx])
combinations_items.append(combination_items)
return np.array(combinations_items), combinations
# return list(combinations)
# %%
def process_combination_mia_features(list_combinations_mia_features):
'''
Convert a list of [{'pred': {'ppl': 5.1875,
'ppl/lowercase_ppl': -1.0285907103711933,
'ppl/zlib': 0.0001900983701566763,
'Min_5.0% Prob': 8.089154411764707,
'Min_10.0% Prob': 6.647058823529412,
'Min_20.0% Prob': 5.1873471882640585,
'Min_30.0% Prob': 4.264161746742671,
'Min_40.0% Prob': 3.5961376833740832,
'Min_50.0% Prob': 3.07814027370479,
'Min_60.0% Prob': 2.663736449002443},
'label': 0}, ... ]
into a numpy array with all the features
'''
features = []
for combination_mia_features in list_combinations_mia_features:
dataset_features = []
for mia_features in combination_mia_features:
dataset_features.append(list(mia_features['pred'].values()))
features.append(dataset_features)
return np.array(features)
# %%
import torch
def train_model(model, train_loader, criterion, optimizer, num_epochs=100):
"""
Train the model using the training set.
Parameters:
model (torch.nn.Module): The model to be trained.
train_loader (torch.utils.data.DataLoader): DataLoader for the training set.
criterion (torch.nn.Module): Loss function.
optimizer (torch.optim.Optimizer): Optimizer for updating model parameters.
num_epochs (int): Number of epochs to train the model. Default is 100.
Returns:
None
"""
model.train()
for epoch in range(num_epochs):
for inputs, labels in train_loader:
inputs, labels = inputs.to('cuda'), labels.to('cuda')
outputs = model(inputs).squeeze(1) # Squeeze the output to match the shape of labels
loss = criterion(outputs, labels.float()) # Convert labels to float
optimizer.zero_grad()
loss.backward()
optimizer.step()
# print(f'Epoch [{epoch+1}/{num_epochs}], Loss: {loss.item():.4f}')
# %%
def evaluate_model(model, eval_loader, threshold=0):
model.eval()
list_raw_scores = []
list_labels = []
with torch.no_grad():
correct = 0
total = 0
for inputs, labels in eval_loader:
inputs, labels = inputs.to('cuda'), labels.to('cuda')
outputs = model(inputs)
predicted = (outputs.squeeze() > threshold).float() # Apply threshold to get binary predictions
list_raw_scores.extend(outputs.squeeze().detach().cpu().numpy().tolist())
list_labels.extend(labels.detach().cpu().numpy().tolist())
total += labels.size(0)
correct += (predicted == labels.float()).sum().item() # Convert labels to float for comparison
accuracy = correct / total
auc_score = roc_auc_score(list_labels, list_raw_scores)
return accuracy, auc_score
# Example usage:
# accuracy, roc_auc = evaluate_model(model, eval_loader, threshold=0)
# print(f'Accuracy: {accuracy:.4f} with threshold {threshold}')
# print(f'ROC AUC: {roc_auc:.4f}')
def get_raw_predictions(model, docs_features):
'''
docs_features is a numpy array of shape (num_docs, num_features)
'''
model.eval()
with torch.no_grad():
outputs = model(docs_features.to('cuda')).cpu().numpy()
return outputs
def get_mia_scorer(A_members, A_non_members, eval_members, eval_non_members, batch_size):
# %%
A_members = process_combination_mia_features([[x] for x in A_members])
A_non_members = process_combination_mia_features([[x] for x in A_non_members])
# remove the top 2.5% and bottom 2.5% of the training_members_datasets and training_non_members_datasets
A_members = np.sort(A_members, axis=0)[int(0.025 * A_members.shape[0]):int(0.975 * A_members.shape[0])]
A_non_members = np.sort(A_non_members, axis=0)[int(0.025 * A_non_members.shape[0]):int(0.975 * A_non_members.shape[0])]
training_set = np.concatenate([A_members, A_non_members], axis=0).squeeze(1) # (950, 10)
training_labels = np.concatenate([np.ones(len(A_members)), np.zeros(len(A_non_members))]) # (2000,)
# Convert to PyTorch tensors
training_set = torch.tensor(training_set, dtype=torch.float32)
training_labels = torch.tensor(training_labels, dtype=torch.long)
# Create DataLoader
train_dataset = TensorDataset(training_set, training_labels)
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
# %%
print(f"Training size: {A_members.shape[0] + A_non_members.shape[0]}")
# %%
input_size = training_set.shape[1]
hidden_size = input_size // 2
output_size = 1 # membership score
model = nn.Linear(input_size, 1).to('cuda')
# %%
# Step 4: Define the loss function and optimizer
criterion = nn.BCEWithLogitsLoss()
optimizer = optim.Adam(model.parameters(), lr=0.01)
train_model(model, train_loader, criterion, optimizer, num_epochs=100)
# %%
# Chunk-level Evaluation
B_members = process_combination_mia_features([[ch] for list_ch in eval_members for ch in list_ch])
B_non_members = process_combination_mia_features([[ch] for list_ch in eval_non_members for ch in list_ch])
# in some cases there could be some nan values for Min-k Prob, we will remove them (if it happens, it usually affect to the small probs)
B_members = np.nan_to_num(B_members, nan=0.0)
B_non_members = np.nan_to_num(B_non_members, nan=0.0)
chunk_eval_set = np.concatenate([B_members, B_non_members], axis=0).squeeze(1) # (950, 10)
chunk_eval_labels = np.concatenate([np.ones(len(B_members)), np.zeros(len(B_non_members))]) # (2000,)
# create Tensors
chunk_eval_set = torch.tensor(chunk_eval_set, dtype=torch.float32)
chunk_eval_labels = torch.tensor(chunk_eval_labels, dtype=torch.long)
# Create DataLoader
chunk_level_dataset = TensorDataset(chunk_eval_set, chunk_eval_labels)
chunk_level_loader = DataLoader(chunk_level_dataset, batch_size=batch_size, shuffle=False)
accuracy, roc_auc_chunk = evaluate_model(model, chunk_level_loader, threshold=0)
return model, roc_auc_chunk
# %%
def dict_to_tensor(mia_features):
# Extract the 'pred' values and convert them to a list
pred_values = list(mia_features['pred'].values())
# clean nan values (replace with 0)
pred_values = [0 if np.isnan(x) else x for x in pred_values]
# Convert the list to a tensor
tensor = torch.tensor(pred_values)
return tensor
def convert_docs2tensors(docs):
'''
Convert a list of documents (dict of mia features) to a list of tensors. A tensor for each document (# paragraphs x #mia_features)
'''
tensors = []
for doc in docs:
paragraph_tensor = []
for paragraph in doc:
paragraph_tensor.append(dict_to_tensor(paragraph))
tensors.append(torch.stack(paragraph_tensor))
return tensors
# %%
def get_eval_scores(model, members_path, non_members_path):
with open(members_path) as f:
eval_members = f.readlines()
eval_members = [json.loads(x) for x in eval_members]
with open(non_members_path) as f:
eval_non_members = f.readlines()
eval_non_members = [json.loads(x) for x in eval_non_members]
eval_members_tensor = convert_docs2tensors(eval_members)
eval_non_members_tensor = convert_docs2tensors(eval_non_members)
eval_members_docs_scores = []
for tensor in eval_members_tensor:
eval_members_docs_scores.append(get_raw_predictions(model, tensor))
eval_non_members_docs_scores = []
for tensor in eval_non_members_tensor:
eval_non_members_docs_scores.append(get_raw_predictions(model, tensor))
return eval_members_docs_scores, eval_non_members_docs_scores
# %%
def evaluate(eval_members_docs_scores, eval_non_members_docs_scores, known_non_members_docs_scores, num_paragraphs):
list_scores = []
list_labels = []
for eval_member_score in eval_members_docs_scores:
if len(eval_member_score) > 1:
statistic, pvalue = mannwhitneyu(eval_member_score[:num_paragraphs].squeeze(),
known_non_members_docs_scores,
alternative='greater')
# statistic, pvalue = ttest_ind(eval_member_score[:num_paragraphs].squeeze(),
# known_non_members_docs_scores,
# alternative='greater',
# equal_var=False)
if not np.isnan(statistic):
list_scores.append(statistic)
list_labels.append(1)
for eval_non_member_score in eval_non_members_docs_scores:
if len(eval_non_member_score) > 1:
statistic, pvalue = mannwhitneyu(eval_non_member_score[:num_paragraphs].squeeze(),
known_non_members_docs_scores,
alternative='greater')
# statistic, pvalue = ttest_ind(eval_non_member_score[:num_paragraphs].squeeze(),
# known_non_members_docs_scores,
# alternative='greater',
# equal_var=False)
if not np.isnan(statistic):
list_scores.append(statistic)
list_labels.append(0)
auc_roc = roc_auc_score(list_labels, list_scores)
fpr, tpr, thresholds = roc_curve(list_labels, list_scores)
# Calculate Youden's J statistic
youden_j = tpr - fpr
best_threshold_index = np.argmax(youden_j)
best_threshold = thresholds[best_threshold_index]
list_predictions = [1 if pval > best_threshold else 0 for pval in list_scores]
tpr, fpr = get_tpr_fpr(list_predictions, list_labels)
report = classification_report(list_labels, list_predictions, output_dict=True)
best_f1 = report['weighted avg']['f1-score']
return best_f1, tpr, fpr, auc_roc
# %%
def get_tpr_fpr(list_predictions, list_labels):
tp = sum([1 for i in range(len(list_predictions)) if list_predictions[i] == 1 and list_labels[i] == 1])
tn = sum([1 for i in range(len(list_predictions)) if list_predictions[i] == 0 and list_labels[i] == 0])
fp = sum([1 for i in range(len(list_predictions)) if list_predictions[i] == 1 and list_labels[i] == 0])
fn = sum([1 for i in range(len(list_predictions)) if list_predictions[i] == 0 and list_labels[i] == 1])
fpr = fp / (fp + tn)*100
tpr = tp / (tp + fn)*100
return tpr, fpr
def clean_nan(mia_partition):
for list_sents in mia_partition:
for sent in list_sents:
for (mia, value) in sent['pred'].items():
if np.isnan(value):
sent['pred'][mia] = 100000
def run_mia(mia_path, training_set_size_per_class, known_datasets, batch_size):
with open(os.path.join(mia_path, "mia_members.jsonl")) as f:
mia_members = f.readlines()
mia_members = [json.loads(x) for x in mia_members]
with open(os.path.join(mia_path, "mia_nonmembers.jsonl")) as f:
mia_non_members = f.readlines()
mia_non_members = [json.loads(x) for x in mia_non_members]
clean_nan(mia_members)
clean_nan(mia_non_members)
# %%
members_text = load_from_disk(os.path.join(mia_path, "members"))
non_members_text = load_from_disk(os.path.join(mia_path, "nonmembers"))
# %%
members_idx = list(range(len(mia_members)))
non_members_idx = list(range(len(mia_non_members)))
# shuffle the indices
np.random.shuffle(members_idx)
np.random.shuffle(non_members_idx)
# shuffle mia_members and text in the same way
mia_members = [mia_members[i] for i in members_idx]
members_text = members_text.select(members_idx)
mia_non_members = [mia_non_members[i] for i in non_members_idx]
non_members_text = non_members_text.select(non_members_idx)
A_non_members = [x for list_paragraphs in mia_non_members[:950] for x in list_paragraphs]
known_non_members = [x for list_paragraphs in mia_non_members[950:1000] for x in list_paragraphs]
eval_non_members = mia_non_members[1000:]
A_members = [x for list_paragraphs in mia_members[:950] for x in list_paragraphs ]
known_members = [x for x in mia_members[950:1000]]
eval_members = mia_members[1000:]
print(f"Num. training paragraphs: {len(A_members) + len(A_non_members)}")
print(f"Num. known docs: {len(known_members)}")
print(f"Num. member eval docs: {len(eval_members)}")
print(f"Num. non-member eval docs: {len(eval_non_members)}")
eval_set_size = len(eval_members) + len(eval_non_members)
# %% [markdown]
# # Step 1: Train Chunk-level Model
model, roc_auc_chunk = get_mia_scorer(A_members, A_non_members, eval_members, eval_non_members, batch_size)
print(f'Chunk-level ROC AUC: {roc_auc_chunk:.4f}')
# %% [markdown]
# # Step 2: Prepare Document-level Evaluation
# %%
eval_members_tensor = convert_docs2tensors(eval_members)
eval_non_members_tensor = convert_docs2tensors(eval_non_members)
eval_members_docs_scores = []
for tensor in eval_members_tensor:
eval_members_docs_scores.append(get_raw_predictions(model, tensor))
eval_non_members_docs_scores = []
for tensor in eval_non_members_tensor:
eval_non_members_docs_scores.append(get_raw_predictions(model, tensor))
# %% [markdown]
# # Step 3: Process the Known Partition
# %%
known_non_members_ = process_combination_mia_features([[x] for x in known_non_members])
known_non_members_ = np.nan_to_num(known_non_members_, nan=0.0)
known_non_members_tensor = torch.tensor(known_non_members_, dtype=torch.float32)
known_non_members_docs_scores = get_raw_predictions(model, known_non_members_tensor)
known_non_members_docs_scores = np.array([x for l in known_non_members_docs_scores for x in l]).reshape(-1)
## Run Statistic Tests
# list_num_paragraphs = (set([len(x) for x in eval_members_docs_scores + eval_non_members_docs_scores]))
# list_num_paragraphs = [x for x in list_num_paragraphs if x > 1]
list_num_paragraphs = [len(x) for x in eval_members_docs_scores + eval_non_members_docs_scores]
print(f"Running mia for up to {int(np.mean(list_num_paragraphs) + np.std(list_num_paragraphs))} paragraphs")
list_auc_roc = []
list_paragraphs = list(range(2, int(np.mean(list_num_paragraphs) + np.std(list_num_paragraphs))))
for num_paragraphs in list_paragraphs:
best_f1, tpr, fpr, auc_roc = evaluate(eval_members_docs_scores, eval_non_members_docs_scores, known_non_members_docs_scores, num_paragraphs)
list_auc_roc.append(auc_roc)
return list_paragraphs, list_auc_roc, roc_auc_chunk, eval_set_size, np.mean(list_num_paragraphs)
def set_seed(seed):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument("--sample_size", type=int, default=None)
parser.add_argument("--training_set_size_per_class", type=int, default=2000)
parser.add_argument("--known_datasets", type=int, default=500)
parser.add_argument("--batch_size", type=int, default=32)
parser.add_argument("--base_path", type=str, default="results/doc_mia/EleutherAI")
return parser.parse_args()
if __name__ == "__main__":
args = parse_args()
# %%
# generate 5 random seeds
seeds = [random.randint(0, 100000) for _ in range(5)]
for seed in seeds:
set_seed(seed)
# %%
list_chunk_sizes = [512, 1024, 2048]
list_llm_names = [os.path.basename(x) for x in glob.glob(os.path.join(args.base_path, "*"))]
for llm_name in list_llm_names:
model_size = llm_name.split("pythia-")[1].split("/")[0]
for dataset_path in glob.glob(f"{args.base_path}/{llm_name}/haritzpuerto/*"):
dataset_name = os.path.basename(dataset_path).split("_")[-1]
for chunk_size in list_chunk_sizes:
full_mia_path = os.path.join(dataset_path, f"sample_size_2000/{chunk_size}")
print(f"Running {full_mia_path}. Seed {seed}")
try:
list_num_paragraphs, list_auc_roc, roc_auc_chunk, eval_set_size, avg_paragraphs = run_mia(full_mia_path, args.training_set_size_per_class, args.known_datasets, args.batch_size)
df = pd.DataFrame({"num_paragraphs": list_num_paragraphs,
"auc_roc": list_auc_roc,
"roc_auc_chunk": [roc_auc_chunk]*len(list_num_paragraphs),
"eval_set_size": [eval_set_size]*len(list_num_paragraphs),
"seed": [seed]*len(list_num_paragraphs),
"avg_paragraphs": [avg_paragraphs]*len(list_num_paragraphs),
})
output_path = os.path.join(full_mia_path, "mia_results_950-50-1000")
os.makedirs(output_path, exist_ok=True)
df.to_csv(os.path.join(output_path, f"mia_results_{seed}.csv"), index=False)
plt.plot(list_num_paragraphs, list_auc_roc, label=f'{model_size} - {chunk_size}')
plt.xlabel('# Paragraphs')
plt.ylabel('AUC')
plt.title(f'AUC vs. # Paragraphs ({dataset_name}) - Chunk-level AUC: {roc_auc_chunk:.4f}')
plt.legend(loc='lower right')
# save the plot
plt.savefig(os.path.join(output_path, f"mia_results_{seed}.png"))
plt.close()
print(f"Done running {output_path}")
except Exception as e:
print(f"Error running {output_path}")
print(e)
with open(f"{args.base_path}/{llm_name}/haritzpuerto/errors.txt", "w") as f:
f.write(str(e))
continue