-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy path06-R_Script-Individual_Tree_Traditional_RandomForest_Model.R
189 lines (164 loc) · 12.8 KB
/
06-R_Script-Individual_Tree_Traditional_RandomForest_Model.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
# THIS CODE RUNS INDIVIDUAL TREE BASED RANDOM FOREST IMPUTATION MODEL WITH TRADITIONAL (LOOCV-LEAVE ONE OUT CROSS VALIDATION) APPROACH
# -----------------------------------------------
rm(list = ls()) #REMOVES ALL THE VARIABLES
cat("\f") #CLEAR SCREEN
setwd("SET WORKING DIRECTORY")
require(openxlsx)
require(matlib)
require(Metrics)
require(ggplot2)
require(randomForest)
require(hydroGOF)
# READ THE GROUND INVENTORY & ASSOCIATED LIDAR METRICS FILES
metrics_file <- read.xlsx("SET INPUT INDIVIDUAL TREE BASED INTEGRATED METRICS FILE IN .XLSX FORMAT") #PLOT_ID,X,Y,GROUND INVENTORY AND LIDAR DERIVED METRICS
View(metrics_file)
# DEVELOP THE TRADITIONAL RANDOM FOREST MODELS & ACCURACY ASSESSMENT FOR INDIVIDUAL DATASET
set.seed(1)
start.time = Sys.time()
metrics_lidar <- data.frame(cbind(metrics_file[, 11], metrics_file[, 12:228])) # COMBINE AGE METRIC WITH THE LIDAR METRICS
colnames(metrics_lidar)[1] <- "age" # PROVIDE COLUMN NAME TO THE AGE METRIC
metrics_ba_lidar <- data.frame(cbind(metrics_file[, 3], metrics_lidar)) # COMBINE BASAL AREA METRIC WITH THE LIDAR METRICS
colnames(metrics_ba_lidar)[1] <- "ba" # PROVIDE COLUMN NAME TO THE BASAL AREA METRIC
metrics_h_lidar <- data.frame(cbind(metrics_file[, 4], metrics_lidar)) # COMBINE HEIGHT METRIC WITH THE LIDAR METRICS
colnames(metrics_h_lidar)[1] <- "h" # PROVIDE COLUMN NAME TO THE HEIGHT METRIC
metrics_vs_lidar <- data.frame(cbind(metrics_file[, 5], metrics_lidar)) # COMBINE STEM VOLUME METRIC WITH THE LIDAR METRICS
colnames(metrics_vs_lidar)[1] <- "vs" # PROVIDE COLUMN NAME TO THE STEM VOLUME METRIC
metrics_trv_lidar <- data.frame(cbind(metrics_file[, 6], metrics_lidar)) # COMBINE TOTAL RECOVERABLE VOLUME METRIC WITH THE LIDAR METRICS
colnames(metrics_trv_lidar)[1] <- "trv" # PROVIDE COLUMN NAME TO THE TOTAL RECOVERABLE VOLUME METRIC
metrics_saw_lidar <- data.frame(cbind(metrics_file[, 7], metrics_lidar)) # COMBINE SAW METRIC WITH THE LIDAR METRICS
colnames(metrics_saw_lidar)[1] <- "saw" # PROVIDE COLUMN NAME TO THE SAW METRIC
metrics_industrial_lidar <- data.frame(cbind(metrics_file[, 8], metrics_lidar)) # COMBINE INDUSTRIAL METRIC WITH THE LIDAR METRICS
colnames(metrics_industrial_lidar)[1] <- "industrial" # PROVIDE COLUMN NAME TO THE INDUSTRIAL METRIC
metrics_chip_lidar <- data.frame(cbind(metrics_file[, 9], metrics_lidar)) # COMBINE CHIP METRIC WITH THE LIDAR METRICS
colnames(metrics_chip_lidar)[1] <- "chip" # PROVIDE COLUMN NAME TO THE CHIP METRIC
metrics_pulp_lidar <- data.frame(cbind(metrics_file[, 10], metrics_lidar)) # COMBINE PULP METRIC WITH THE LIDAR METRICS
colnames(metrics_pulp_lidar)[1] <- "pulp" # PROVIDE COLUMN NAME TO THE PULP METRIC
metrics_ba <- metrics_ba_lidar$ba # BASAL AREA METRIC
metrics_h <- metrics_h_lidar$h # HEIGHT METRIC
metrics_vs <- metrics_vs_lidar$vs # STEM VOLUME METRIC
metrics_trv <- metrics_trv_lidar$trv # TOTAL RECOVERABLE VOLUME METRIC
metrics_saw <- metrics_saw_lidar$saw # SAW METRIC
metrics_industrial <- metrics_industrial_lidar$industrial # INDUSTRIAL METRIC
metrics_chip <- metrics_chip_lidar$chip # CHIP METRIC
metrics_pulp <- metrics_pulp_lidar$pulp # PULP METRIC
nrow_ind <- nrow(metrics_file)
metrics_ba_imp <- data.frame()
metrics_h_imp <- data.frame()
metrics_vs_imp <- data.frame()
metrics_trv_imp <- data.frame()
metrics_saw_imp <- data.frame()
metrics_industrial_imp <- data.frame()
metrics_chip_imp <- data.frame()
metrics_pulp_imp <- data.frame()
pb <- winProgressBar(title = "Progress Bar", min = 1, max = nrow_ind, initial = 1, width = 300)
for (m in 1:nrow_ind)
{
metrics_ba_lidar_in <- metrics_ba_lidar[-c(m),] # ONE BASAL AREA BASED PLOT SAMPLE IS LEFT-OUT DURING EACH ITERATION
metrics_ba_rf <- randomForest(ba~., data = metrics_ba_lidar_in, ntree = 100, mtry = floor(ncol(metrics_ba_lidar_in)/3),
importance = TRUE, na.action = na.omit) # RANDOM FOREST MODEL IS DEVELOPED FROM REST OF THE PLOT SAMPLES
metrics_ba_imp_out <- predict(metrics_ba_rf, metrics_lidar[m,]) # BASAL AREA METRIC FOR THE LEFT-OUT SAMPLE IS IMPUTED FROM THE MODEL
metrics_ba_imp <- rbind(metrics_ba_imp, metrics_ba_imp_out) #BASAL AREA METRIC FOR EACH LEFT-OUT SAMPLE IS COMBINED
metrics_h_lidar_in <- metrics_h_lidar[-c(m),] # ONE HEIGHT BASED PLOT SAMPLE IS LEFT-OUT DURING EACH ITERATION
metrics_h_rf <- randomForest(h~., data = metrics_h_lidar_in, ntree = 100, mtry = floor(ncol(metrics_h_lidar_in)/3),
importance = TRUE, na.action = na.omit) # RANDOM FOREST MODEL IS DEVELOPED FROM REST OF THE PLOT SAMPLES
metrics_h_imp_out <- predict(metrics_h_rf, metrics_lidar[m,]) # HEIGHT METRIC FOR THE LEFT-OUT SAMPLE IS IMPUTED FROM THE MODEL
metrics_h_imp <- rbind(metrics_h_imp, metrics_h_imp_out) #HEIGHT METRIC FOR EACH LEFT-OUT SAMPLE IS COMBINED
metrics_vs_lidar_in <- metrics_vs_lidar[-c(m),] # ONE STEM VOLUME BASED PLOT SAMPLE IS LEFT-OUT DURING EACH ITERATION
metrics_vs_rf <- randomForest(vs~., data = metrics_vs_lidar_in, ntree = 100, mtry = floor(ncol(metrics_vs_lidar_in)/3),
importance = TRUE, na.action = na.omit) # RANDOM FOREST MODEL IS DEVELOPED FROM REST OF THE PLOT SAMPLES
metrics_vs_imp_out <- predict(metrics_vs_rf, metrics_lidar[m,]) # STEM VOLUME METRIC FOR THE LEFT-OUT SAMPLE IS IMPUTED FROM THE MODEL
metrics_vs_imp <- rbind(metrics_vs_imp, metrics_vs_imp_out) #STEM VOLUME METRIC FOR EACH LEFT-OUT SAMPLE IS COMBINED
metrics_trv_lidar_in <- metrics_trv_lidar[-c(m),] # ONE TOTAL RECOVERABLE VOLUME BASED PLOT SAMPLE IS LEFT-OUT DURING EACH ITERATION
metrics_trv_rf <- randomForest(trv~., data = metrics_trv_lidar_in, ntree = 100, mtry = floor(ncol(metrics_trv_lidar_in)/3),
importance = TRUE, na.action = na.omit) # RANDOM FOREST MODEL IS DEVELOPED FROM REST OF THE PLOT SAMPLES
metrics_trv_imp_out <- predict(metrics_trv_rf, metrics_lidar[m,]) # TOTAL RECOVERABLE VOLUME METRIC FOR THE LEFT-OUT SAMPLE IS IMPUTED FROM THE MODEL
metrics_trv_imp <- rbind(metrics_trv_imp, metrics_trv_imp_out) #TOTAL RECOVERABLE VOLUME METRIC FOR EACH LEFT-OUT SAMPLE IS COMBINED
metrics_saw_lidar_in <- metrics_saw_lidar[-c(m),] # ONE SAW BASED PLOT SAMPLE IS LEFT-OUT DURING EACH ITERATION
metrics_saw_rf <- randomForest(saw~., data = metrics_saw_lidar_in, ntree = 100, mtry = floor(ncol(metrics_saw_lidar_in)/3),
importance = TRUE, na.action = na.omit) # RANDOM FOREST MODEL IS DEVELOPED FROM REST OF THE PLOT SAMPLES
metrics_saw_imp_out <- predict(metrics_saw_rf, metrics_lidar[m,]) # SAW METRIC FOR THE LEFT-OUT SAMPLE IS IMPUTED FROM THE MODEL
metrics_saw_imp <- rbind(metrics_saw_imp, metrics_saw_imp_out) #SAW METRIC FOR EACH LEFT-OUT SAMPLE IS COMBINED
metrics_industrial_lidar_in <- metrics_industrial_lidar[-c(m),] # ONE INDUSTRIAL BASED PLOT SAMPLE IS LEFT-OUT DURING EACH ITERATION
metrics_industrial_rf <- randomForest(industrial~., data = metrics_industrial_lidar_in, ntree = 100, mtry = floor(ncol(metrics_industrial_lidar_in)/3),
importance = TRUE, na.action = na.omit) # RANDOM FOREST MODEL IS DEVELOPED FROM REST OF THE PLOT SAMPLES
metrics_industrial_imp_out <- predict(metrics_industrial_rf, metrics_lidar[m,]) # INDUSTRIAL METRIC FOR THE LEFT-OUT SAMPLE IS IMPUTED FROM THE MODEL
metrics_industrial_imp <- rbind(metrics_industrial_imp, metrics_industrial_imp_out) #INDUSTRIAL METRIC FOR EACH LEFT-OUT SAMPLE IS COMBINED
metrics_chip_lidar_in <- metrics_chip_lidar[-c(m),] # ONE CHIP BASED PLOT SAMPLE IS LEFT-OUT DURING EACH ITERATION
metrics_chip_rf <- randomForest(chip~., data = metrics_chip_lidar_in, ntree = 100, mtry = floor(ncol(metrics_chip_lidar_in)/3),
importance = TRUE, na.action = na.omit) # RANDOM FOREST MODEL IS DEVELOPED FROM REST OF THE PLOT SAMPLES
metrics_chip_imp_out <- predict(metrics_chip_rf, metrics_lidar[m,]) # CHIP METRIC FOR THE LEFT-OUT SAMPLE IS IMPUTED FROM THE MODEL
metrics_chip_imp <- rbind(metrics_chip_imp, metrics_chip_imp_out) #CHIP METRIC FOR EACH LEFT-OUT SAMPLE IS COMBINED
metrics_pulp_lidar_in <- metrics_pulp_lidar[-c(m),] # ONE PULP BASED PLOT SAMPLE IS LEFT-OUT DURING EACH ITERATION
metrics_pulp_rf <- randomForest(pulp~., data = metrics_pulp_lidar_in, ntree = 100, mtry = floor(ncol(metrics_pulp_lidar_in)/3),
importance = TRUE, na.action = na.omit) # RANDOM FOREST MODEL IS DEVELOPED FROM REST OF THE PLOT SAMPLES
metrics_pulp_imp_out <- predict(metrics_pulp_rf, metrics_lidar[m,]) # PULP METRIC FOR THE LEFT-OUT SAMPLE IS IMPUTED FROM THE MODEL
metrics_pulp_imp <- rbind(metrics_pulp_imp, metrics_pulp_imp_out) #PULP METRIC FOR EACH LEFT-OUT SAMPLE IS COMBINED
Sys.sleep(0.1)
setWinProgressBar(pb, m, title = paste(round((m * 100)/nrow_ind, 0), "% done"))
}
close(pb)
end.time = Sys.time()
time.taken = end.time - start.time
print(time.taken)
# ACCURACY ASSESSMENT OF IMPUTED GROUND INVENTORY METRICS WITH RESPECT TO THEIR ORIGINAL METRIC VALUES...
# ...BASED ON THE ESTIMATION OF NORMALIZED RMSE (NRMSE) AND PERCENT BIASNESS (PBIAS) MEASURES
set.seed(2)
metrics_ba_nrmse <- round(nrmse(metrics_ba_imp, metrics_ba, na.rm = TRUE, norm = "maxmin"), 3)
metrics_h_nrmse <- round(nrmse(metrics_h_imp, metrics_h, na.rm = TRUE, norm = "maxmin"), 3)
metrics_vs_nrmse <- round(nrmse(metrics_vs_imp, metrics_vs, na.rm = TRUE, norm = "maxmin"), 3)
metrics_trv_nrmse <- round(nrmse(metrics_trv_imp, metrics_trv, na.rm = TRUE, norm = "maxmin"), 3)
metrics_saw_nrmse <- round(nrmse(metrics_saw_imp, metrics_saw, na.rm = TRUE, norm = "maxmin"), 3)
metrics_industrial_nrmse <- round(nrmse(metrics_industrial_imp, metrics_industrial, na.rm = TRUE, norm = "maxmin"), 3)
metrics_chip_nrmse <- round(nrmse(metrics_chip_imp, metrics_chip, na.rm = TRUE, norm = "maxmin"), 3)
metrics_pulp_nrmse <- round(nrmse(metrics_pulp_imp, metrics_pulp, na.rm = TRUE, norm = "maxmin"), 3)
metrics_ba_pbias <- round(pbias(metrics_ba_imp, metrics_ba, na.rm = TRUE), 3)
metrics_h_pbias <- round(pbias(metrics_h_imp, metrics_h, na.rm = TRUE), 3)
metrics_vs_pbias <- round(pbias(metrics_vs_imp, metrics_vs, na.rm = TRUE), 3)
metrics_trv_pbias <- round(pbias(metrics_trv_imp, metrics_trv, na.rm = TRUE), 3)
metrics_saw_pbias <- round(pbias(metrics_saw_imp, metrics_saw, na.rm = TRUE), 3)
metrics_industrial_pbias <- round(pbias(metrics_industrial_imp, metrics_industrial, na.rm = TRUE), 3)
metrics_chip_pbias <- round(pbias(metrics_chip_imp, metrics_chip, na.rm = TRUE), 3)
metrics_pulp_pbias <- round(pbias(metrics_pulp_imp, metrics_pulp, na.rm = TRUE), 3)
# COMBINE ESTIMATED NRMSE AND PBIAS ACCURACY MEASURES FOR THE GROUND INVENTORY METRICS
set.seed(3)
metrics_GI_accuracy <- cbind(rbind("Variables", "Basal Area", "Height", "Stem Volume", "Total R. Volume",
"Saw", "Industrial", "Chip", "Pulp"),
rbind("sRMSE",
metrics_ba_nrmse,
metrics_h_nrmse,
metrics_vs_nrmse,
metrics_trv_nrmse,
metrics_saw_nrmse,
metrics_industrial_nrmse,
metrics_chip_nrmse,
metrics_pulp_nrmse),
rbind("pBias",
metrics_ba_pbias,
metrics_h_pbias,
metrics_vs_pbias,
metrics_trv_pbias,
metrics_saw_pbias,
metrics_industrial_pbias,
metrics_chip_pbias,
metrics_pulp_pbias))
metrics_GI_imp <- cbind(metrics_ba_imp, metrics_h_imp, metrics_vs_imp, metrics_trv_imp,
metrics_saw_imp, metrics_industrial_imp, metrics_chip_imp, metrics_pulp_imp,
metrics_ba, metrics_h, metrics_vs, metrics_trv,
metrics_saw, metrics_industrial, metrics_chip, metrics_pulp)
colnames(metrics_GI_imp)[1] <- "ba"
colnames(metrics_GI_imp)[2] <- "h"
colnames(metrics_GI_imp)[3] <- "vs"
colnames(metrics_GI_imp)[4] <- "trv"
colnames(metrics_GI_imp)[5] <- "saw"
colnames(metrics_GI_imp)[6] <- "industrial"
colnames(metrics_GI_imp)[7] <- "chip"
colnames(metrics_GI_imp)[8] <- "pulp"
# WRITE ORIGINAL AND IMPUTED GROUND INVENTORY METRICS ALONG WITH NRMSE AND PBIAS ACCURACY MEASURES IN .XLSX FORMAT
metrics_GI_wb <- createWorkbook("metrics_GI")
addWorksheet(metrics_GI_wb, "Imputation_Results")
writeData(metrics_GI_wb, sheet = "Imputation_Results", metrics_GI_imp)
addWorksheet(metrics_GI_wb, "Accuracy_Results")
writeData(metrics_GI_wb, sheet = "Accuracy_Results", metrics_GI_accuracy)
saveWorkbook(metrics_GI_wb,
"WRITE FOLDER PATH AND OUTPUT INDIVIDUAL TREE BASED FILE IN .XLSX FORMAT",
overwrite = TRUE)