-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathmain.py
93 lines (70 loc) · 2.31 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
#-*- coding=utf8 -*-
from libDL import *
if __name__ == '__main__':
#read data from file
file_name = sys.argv[1]
train_name = sys.argv[2]
input_node = Open_data(file_name)
#read training data
d = Open_data(train_name)
#Prepare weight
w = []
#decide kernel size
conv_kernel = 4
pool_kernel = 2
#Conv weight
w.append(MakeWeight(4,1))
#M_Pool weight
next_nodelen=(len(input_node[0])-conv_kernel+1)/pool_kernel+1
#FC weight(node_length and output node num)
w.append(MakeWeight(next_nodelen, 3))
#Prepare layer object
Input = Layer(0)
Conv_Layer1 = Layer(conv_kernel)
Pool_Layer1 = Layer(pool_kernel)
Out_Layer1 = Layer(0)
"""
------------------------------
start learning
------------------------------
"""
count = 0
for z in range(len(input_node)):
Input.node = input_node[z]
Pass_Conv(Input, Conv_Layer1, w[0][0])
#Pooling must remember pre node
Pool_Layer1.bp_node = Conv_Layer1.node
Pass_Max_Pool(Conv_Layer1, Pool_Layer1, pool_kernel)
Pass_FC_Out(Pool_Layer1, Out_Layer1, w[1])
#print output node
print "Num : %d Output = [" % z,
for i in Out_Layer1.node:
print " %f " % i,
print ']'
"""
------------------------------
start evaluating accuracy
------------------------------
"""
max = [0.0, 0]
for i in range(len(Out_Layer1.node)):
if Out_Layer1.node[i] > max[0]:
max[0] = Out_Layer1.node[i]
max[1] = i
if d[z][max[1]] == 1:
count += 1
"""
------------------------------
start back propagation
------------------------------
"""
#Calc delta
delta_3 = Cross_Entropy(Out_Layer1.node, d[z])
delta_2 = Out_FC_Delta(Pool_Layer1.node, delta_3, w[1])
delta_1 = Max_Pool_Delta(Pool_Layer1, delta_2)
delta_0 = Conv_Delta(Conv_Layer1, delta_1, w[0][0])
#Update weight
w[1] = FC_Update(Pool_Layer1.node, delta_3, w[1])
w[0][0] = Conv_Update(Input.node, delta_1, w[0][0])
#accuracy
print "%.2f%% correct." % (float(count) / float(len(input_node)) * 100.0)