forked from bbc/automated-audio-tagging-evaluation
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathevaluation.py
executable file
·78 lines (71 loc) · 2.86 KB
/
evaluation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
#!/usr/bin/python
# Copyright (c) 2011 British Broadcasting Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import json
def topn(automated_tags, editorial_tags):
# Values proposed in "A Large-Scale Evaluation of Acoustic and Subjective Music Similarity Measures":
# alpha_r = 0.5 ** (1.0/3)
# alpha_c = 0.5 ** (2.0/3)
# Our values:
alpha_r = 1 # ordering does not matter in reference list
alpha_c = 0.8 # a tag at 20th position will be 0.01 (0.8 ** 20)
total_score = 0
for barcode in editorial_tags.keys():
score = 0
j = 0
for tag in editorial_tags[barcode]:
kj = 0
for tag_data in automated_tags[barcode]:
if tag_data['link'] == tag:
break
kj += 1
# What happens when j is not in B?
if not kj == len(automated_tags[barcode]):
score += (alpha_r ** j) * (alpha_c ** kj)
j += 1
norm = 0
l = 0
for tag in editorial_tags[barcode]:
norm += (alpha_r * alpha_c) ** l
score = score / norm
print barcode + ': ' + str(score)
total_score += score
return total_score / len(editorial_tags.keys())
def editorial_tags():
editorial_tags = {}
editorial_dir = os.path.join('data', 'editorial-data')
for editorial_f in os.listdir(editorial_dir):
barcode = editorial_f.split('_')[0]
editorial_categories = json.load(open(os.path.join(editorial_dir, editorial_f)))['programme']['categories']
for category in editorial_categories:
# Is it a DBpedia tag?
if category.has_key(u'sameAs') and category[u'sameAs']:
if editorial_tags.has_key(barcode):
editorial_tags[barcode] += [ category[u'sameAs'] ]
else:
editorial_tags[barcode] = [ category[u'sameAs'] ]
return editorial_tags
def automated_tags():
automated_tags = {}
automated_dir = os.path.join('data', 'automated-tags')
for automated_f in os.listdir(automated_dir):
barcode = automated_f.split('.')[0]
automated_tags[barcode] = json.load(open(os.path.join(automated_dir, automated_f)))
return automated_tags
def run():
editorial = editorial_tags()
automated = automated_tags()
print "Average TopN score: " + str(topn(automated, editorial))
run()