-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathdatasets.py
41 lines (33 loc) · 1.43 KB
/
datasets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
# -*- coding: utf-8 -*-
import torch
from torchvision import datasets
from torchvision import transforms
def fetch_bylabel(label):
if label == 10:
normalizer = transforms.Normalize(mean=[0.4914, 0.4824, 0.4467],
std=[0.2471, 0.2435, 0.2616])
data_cls = datasets.CIFAR10
else:
normalizer = transforms.Normalize(mean=[0.5071, 0.4867, 0.4408],
std=[0.2675, 0.2565, 0.2761])
data_cls = datasets.CIFAR100
return normalizer, data_cls
def load_dataset(label, batch_size):
normalizer, data_cls = fetch_bylabel(label)
train_loader = torch.utils.data.DataLoader(
data_cls("./data/cifar{}".format(label), train=True, download=True,
transform=transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
normalizer
])),
batch_size=batch_size, shuffle=True, num_workers=2)
test_loader = torch.utils.data.DataLoader(
data_cls("./data/cifar{}".format(label), train=False, download=False,
transform=transforms.Compose([
transforms.ToTensor(),
normalizer
])),
batch_size=batch_size, shuffle=False, num_workers=2)
return train_loader, test_loader