forked from faif/python-patterns
-
Notifications
You must be signed in to change notification settings - Fork 0
/
graph_search.py
150 lines (123 loc) · 4.46 KB
/
graph_search.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
class GraphSearch:
"""Graph search emulation in python, from source
http://www.python.org/doc/essays/graphs/
dfs stands for Depth First Search
bfs stands for Breadth First Search"""
def __init__(self, graph):
self.graph = graph
def find_path_dfs(self, start, end, path=None):
path = path or []
path.append(start)
if start == end:
return path
for node in self.graph.get(start, []):
if node not in path:
newpath = self.find_path_dfs(node, end, path[:])
if newpath:
return newpath
def find_all_paths_dfs(self, start, end, path=None):
path = path or []
path.append(start)
if start == end:
return [path]
paths = []
for node in self.graph.get(start, []):
if node not in path:
newpaths = self.find_all_paths_dfs(node, end, path[:])
paths.extend(newpaths)
return paths
def find_shortest_path_dfs(self, start, end, path=None):
path = path or []
path.append(start)
if start == end:
return path
shortest = None
for node in self.graph.get(start, []):
if node not in path:
newpath = self.find_shortest_path_dfs(node, end, path[:])
if newpath:
if not shortest or len(newpath) < len(shortest):
shortest = newpath
return shortest
def find_shortest_path_bfs(self, start, end):
"""
Finds the shortest path between two nodes in a graph using breadth-first search.
:param start: The node to start from.
:type start: str or int
:param end: The node to find the shortest path to.
:type end: str or int
:returns queue_path_to_end, dist_to[end]: A list of nodes
representing the shortest path from `start` to `end`, and a dictionary
mapping each node in the graph (except for `start`) with its distance from it
(in terms of hops). If no such path exists, returns an empty list and an empty
dictionary instead.
"""
queue = [start]
dist_to = {start: 0}
edge_to = {}
if start == end:
return queue
while len(queue):
value = queue.pop(0)
for node in self.graph[value]:
if node not in dist_to.keys():
edge_to[node] = value
dist_to[node] = dist_to[value] + 1
queue.append(node)
if end in edge_to.keys():
path = []
node = end
while dist_to[node] != 0:
path.insert(0, node)
node = edge_to[node]
path.insert(0, start)
return path
def main():
"""
# example of graph usage
>>> graph = {
... 'A': ['B', 'C'],
... 'B': ['C', 'D'],
... 'C': ['D', 'G'],
... 'D': ['C'],
... 'E': ['F'],
... 'F': ['C'],
... 'G': ['E'],
... 'H': ['C']
... }
# initialization of new graph search object
>>> graph_search = GraphSearch(graph)
>>> print(graph_search.find_path_dfs('A', 'D'))
['A', 'B', 'C', 'D']
# start the search somewhere in the middle
>>> print(graph_search.find_path_dfs('G', 'F'))
['G', 'E', 'F']
# unreachable node
>>> print(graph_search.find_path_dfs('C', 'H'))
None
# non existing node
>>> print(graph_search.find_path_dfs('C', 'X'))
None
>>> print(graph_search.find_all_paths_dfs('A', 'D'))
[['A', 'B', 'C', 'D'], ['A', 'B', 'D'], ['A', 'C', 'D']]
>>> print(graph_search.find_shortest_path_dfs('A', 'D'))
['A', 'B', 'D']
>>> print(graph_search.find_shortest_path_dfs('A', 'F'))
['A', 'C', 'G', 'E', 'F']
>>> print(graph_search.find_shortest_path_bfs('A', 'D'))
['A', 'B', 'D']
>>> print(graph_search.find_shortest_path_bfs('A', 'F'))
['A', 'C', 'G', 'E', 'F']
# start the search somewhere in the middle
>>> print(graph_search.find_shortest_path_bfs('G', 'F'))
['G', 'E', 'F']
# unreachable node
>>> print(graph_search.find_shortest_path_bfs('A', 'H'))
None
# non existing node
>>> print(graph_search.find_shortest_path_bfs('A', 'X'))
None
"""
if __name__ == "__main__":
import doctest
doctest.testmod()