forked from leethomason/MicroPather
-
Notifications
You must be signed in to change notification settings - Fork 0
/
micropather.cpp
1063 lines (889 loc) · 25.5 KB
/
micropather.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
Copyright (c) 2000-2009 Lee Thomason (www.grinninglizard.com)
Grinning Lizard Utilities.
This software is provided 'as-is', without any express or implied
warranty. In no event will the authors be held liable for any
damages arising from the use of this software.
Permission is granted to anyone to use this software for any
purpose, including commercial applications, and to alter it and
redistribute it freely, subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must
not claim that you wrote the original software. If you use this
software in a product, an acknowledgment in the product documentation
would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and
must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source
distribution.
*/
#ifdef _MSC_VER
#pragma warning( disable : 4786 ) // Debugger truncating names.
#pragma warning( disable : 4530 ) // Exception handler isn't used
#endif
//#include <vector>
#include <memory.h>
#include <stdio.h>
//#define DEBUG_PATH
//#define DEBUG_PATH_DEEP
//#define TRACK_COLLISION
//#define DEBUG_CACHING
#ifdef DEBUG_CACHING
#include "../grinliz/gldebug.h"
#endif
#include "micropather.h"
using namespace micropather;
class OpenQueue
{
public:
OpenQueue( Graph* _graph )
{
graph = _graph;
sentinel = (PathNode*) sentinelMem;
sentinel->InitSentinel();
#ifdef DEBUG
sentinel->CheckList();
#endif
}
~OpenQueue() {}
void Push( PathNode* pNode );
PathNode* Pop();
void Update( PathNode* pNode );
bool Empty() { return sentinel->next == sentinel; }
private:
OpenQueue( const OpenQueue& ); // undefined and unsupported
void operator=( const OpenQueue& );
PathNode* sentinel;
int sentinelMem[ ( sizeof( PathNode ) + sizeof( int ) ) / sizeof( int ) ];
Graph* graph; // for debugging
};
void OpenQueue::Push( PathNode* pNode )
{
MPASSERT( pNode->inOpen == 0 );
MPASSERT( pNode->inClosed == 0 );
#ifdef DEBUG_PATH_DEEP
printf( "Open Push: " );
graph->PrintStateInfo( pNode->state );
printf( " total=%.1f\n", pNode->totalCost );
#endif
// Add sorted. Lowest to highest cost path. Note that the sentinel has
// a value of FLT_MAX, so it should always be sorted in.
MPASSERT( pNode->totalCost < FLT_MAX );
PathNode* iter = sentinel->next;
while ( true )
{
if ( pNode->totalCost < iter->totalCost ) {
iter->AddBefore( pNode );
pNode->inOpen = 1;
break;
}
iter = iter->next;
}
MPASSERT( pNode->inOpen ); // make sure this was actually added.
#ifdef DEBUG
sentinel->CheckList();
#endif
}
PathNode* OpenQueue::Pop()
{
MPASSERT( sentinel->next != sentinel );
PathNode* pNode = sentinel->next;
pNode->Unlink();
#ifdef DEBUG
sentinel->CheckList();
#endif
MPASSERT( pNode->inClosed == 0 );
MPASSERT( pNode->inOpen == 1 );
pNode->inOpen = 0;
#ifdef DEBUG_PATH_DEEP
printf( "Open Pop: " );
graph->PrintStateInfo( pNode->state );
printf( " total=%.1f\n", pNode->totalCost );
#endif
return pNode;
}
void OpenQueue::Update( PathNode* pNode )
{
#ifdef DEBUG_PATH_DEEP
printf( "Open Update: " );
graph->PrintStateInfo( pNode->state );
printf( " total=%.1f\n", pNode->totalCost );
#endif
MPASSERT( pNode->inOpen );
// If the node now cost less than the one before it,
// move it to the front of the list.
if ( pNode->prev != sentinel && pNode->totalCost < pNode->prev->totalCost ) {
pNode->Unlink();
sentinel->next->AddBefore( pNode );
}
// If the node is too high, move to the right.
if ( pNode->totalCost > pNode->next->totalCost ) {
PathNode* it = pNode->next;
pNode->Unlink();
while ( pNode->totalCost > it->totalCost )
it = it->next;
it->AddBefore( pNode );
#ifdef DEBUG
sentinel->CheckList();
#endif
}
}
class ClosedSet
{
public:
ClosedSet( Graph* _graph ) { this->graph = _graph; }
~ClosedSet() {}
void Add( PathNode* pNode )
{
#ifdef DEBUG_PATH_DEEP
printf( "Closed add: " );
graph->PrintStateInfo( pNode->state );
printf( " total=%.1f\n", pNode->totalCost );
#endif
#ifdef DEBUG
MPASSERT( pNode->inClosed == 0 );
MPASSERT( pNode->inOpen == 0 );
#endif
pNode->inClosed = 1;
}
void Remove( PathNode* pNode )
{
#ifdef DEBUG_PATH_DEEP
printf( "Closed remove: " );
graph->PrintStateInfo( pNode->state );
printf( " total=%.1f\n", pNode->totalCost );
#endif
MPASSERT( pNode->inClosed == 1 );
MPASSERT( pNode->inOpen == 0 );
pNode->inClosed = 0;
}
private:
ClosedSet( const ClosedSet& );
void operator=( const ClosedSet& );
Graph* graph;
};
PathNodePool::PathNodePool( unsigned _allocate, unsigned _typicalAdjacent )
: firstBlock( 0 ),
blocks( 0 ),
#if defined( MICROPATHER_STRESS )
allocate( 32 ),
#else
allocate( _allocate ),
#endif
nAllocated( 0 ),
nAvailable( 0 )
{
freeMemSentinel.InitSentinel();
cacheCap = allocate * _typicalAdjacent;
cacheSize = 0;
cache = (NodeCost*)malloc(cacheCap * sizeof(NodeCost));
// Want the behavior that if the actual number of states is specified, the cache
// will be at least that big.
hashShift = 3; // 8 (only useful for stress testing)
#if !defined( MICROPATHER_STRESS )
while( HashSize() < allocate )
++hashShift;
#endif
hashTable = (PathNode**)calloc( HashSize(), sizeof(PathNode*) );
blocks = firstBlock = NewBlock();
// printf( "HashSize=%d allocate=%d\n", HashSize(), allocate );
totalCollide = 0;
}
PathNodePool::~PathNodePool()
{
Clear();
free( firstBlock );
free( cache );
free( hashTable );
#ifdef TRACK_COLLISION
printf( "Total collide=%d HashSize=%d HashShift=%d\n", totalCollide, HashSize(), hashShift );
#endif
}
bool PathNodePool::PushCache( const NodeCost* nodes, int nNodes, int* start ) {
*start = -1;
if ( nNodes+cacheSize <= cacheCap ) {
for( int i=0; i<nNodes; ++i ) {
cache[i+cacheSize] = nodes[i];
}
*start = cacheSize;
cacheSize += nNodes;
return true;
}
return false;
}
void PathNodePool::Clear()
{
#ifdef TRACK_COLLISION
// Collision tracking code.
int collide=0;
for( unsigned i=0; i<HashSize(); ++i ) {
if ( hashTable[i] && (hashTable[i]->child[0] || hashTable[i]->child[1]) )
++collide;
}
//printf( "PathNodePool %d/%d collision=%d %.1f%%\n", nAllocated, HashSize(), collide, 100.0f*(float)collide/(float)HashSize() );
totalCollide += collide;
#endif
Block* b = blocks;
while( b ) {
Block* temp = b->nextBlock;
if ( b != firstBlock ) {
free( b );
}
b = temp;
}
blocks = firstBlock; // Don't delete the first block (we always need at least that much memory.)
// Set up for new allocations (but don't do work we don't need to. Reset/Clear can be called frequently.)
if ( nAllocated > 0 ) {
freeMemSentinel.next = &freeMemSentinel;
freeMemSentinel.prev = &freeMemSentinel;
memset( hashTable, 0, sizeof(PathNode*)*HashSize() );
for( unsigned i=0; i<allocate; ++i ) {
freeMemSentinel.AddBefore( &firstBlock->pathNode[i] );
}
}
nAvailable = allocate;
nAllocated = 0;
cacheSize = 0;
}
PathNodePool::Block* PathNodePool::NewBlock()
{
Block* block = (Block*) calloc( 1, sizeof(Block) + sizeof(PathNode)*(allocate-1) );
block->nextBlock = 0;
nAvailable += allocate;
for( unsigned i=0; i<allocate; ++i ) {
freeMemSentinel.AddBefore( &block->pathNode[i] );
}
return block;
}
unsigned PathNodePool::Hash( void* voidval )
{
/*
Spent quite some time on this, and the result isn't quite satifactory. The
input set is the size of a void*, and is generally (x,y) pairs or memory pointers.
FNV resulting in about 45k collisions in a (large) test and some other approaches
about the same.
Simple folding reduces collisions to about 38k - big improvement. However, that may
be an artifact of the (x,y) pairs being well distributed. And for either the x,y case
or the pointer case, there are probably very poor hash table sizes that cause "overlaps"
and grouping. (An x,y encoding with a hashShift of 8 is begging for trouble.)
The best tested results are simple folding, but that seems to beg for a pathelogical case.
FNV-1a was the next best choice, without obvious pathelogical holes.
Finally settled on h%HashMask(). Simple, but doesn't have the obvious collision cases of folding.
*/
/*
// Time: 567
// FNV-1a
// http://isthe.com/chongo/tech/comp/fnv/
// public domain.
MP_UPTR val = (MP_UPTR)(voidval);
const unsigned char *p = (unsigned char *)(&val);
unsigned int h = 2166136261;
for( size_t i=0; i<sizeof(MP_UPTR); ++i, ++p ) {
h ^= *p;
h *= 16777619;
}
// Fold the high bits to the low bits. Doesn't (generally) use all
// the bits since the shift is usually < 16, but better than not
// using the high bits at all.
return ( h ^ (h>>hashShift) ^ (h>>(hashShift*2)) ^ (h>>(hashShift*3)) ) & HashMask();
*/
/*
// Time: 526
MP_UPTR h = (MP_UPTR)(voidval);
return ( h ^ (h>>hashShift) ^ (h>>(hashShift*2)) ^ (h>>(hashShift*3)) ) & HashMask();
*/
// Time: 512
// The HashMask() is used as the divisor. h%1024 has lots of common
// repetitions, but h%1023 will move things out more.
MP_UPTR h = (MP_UPTR)(voidval);
return h % HashMask();
}
PathNode* PathNodePool::Alloc()
{
if ( freeMemSentinel.next == &freeMemSentinel ) {
MPASSERT( nAvailable == 0 );
Block* b = NewBlock();
b->nextBlock = blocks;
blocks = b;
MPASSERT( freeMemSentinel.next != &freeMemSentinel );
}
PathNode* pathNode = freeMemSentinel.next;
pathNode->Unlink();
++nAllocated;
MPASSERT( nAvailable > 0 );
--nAvailable;
return pathNode;
}
void PathNodePool::AddPathNode( unsigned key, PathNode* root )
{
if ( hashTable[key] ) {
PathNode* p = hashTable[key];
while( true ) {
int dir = (root->state < p->state) ? 0 : 1;
if ( p->child[dir] ) {
p = p->child[dir];
}
else {
p->child[dir] = root;
break;
}
}
}
else {
hashTable[key] = root;
}
}
PathNode* PathNodePool::FetchPathNode( void* state )
{
unsigned key = Hash( state );
PathNode* root = hashTable[key];
while( root ) {
if ( root->state == state ) {
break;
}
root = ( state < root->state ) ? root->child[0] : root->child[1];
}
MPASSERT( root );
return root;
}
PathNode* PathNodePool::GetPathNode( unsigned frame, void* _state, float _costFromStart, float _estToGoal, PathNode* _parent )
{
unsigned key = Hash( _state );
PathNode* root = hashTable[key];
while( root ) {
if ( root->state == _state ) {
if ( root->frame == frame ) // This is the correct state and correct frame.
break;
// Correct state, wrong frame.
root->Init( frame, _state, _costFromStart, _estToGoal, _parent );
break;
}
root = ( _state < root->state ) ? root->child[0] : root->child[1];
}
if ( !root ) {
// allocate new one
root = Alloc();
root->Clear();
root->Init( frame, _state, _costFromStart, _estToGoal, _parent );
AddPathNode( key, root );
}
return root;
}
void PathNode::Init( unsigned _frame,
void* _state,
float _costFromStart,
float _estToGoal,
PathNode* _parent )
{
state = _state;
costFromStart = _costFromStart;
estToGoal = _estToGoal;
CalcTotalCost();
parent = _parent;
frame = _frame;
inOpen = 0;
inClosed = 0;
}
MicroPather::MicroPather( Graph* _graph, unsigned allocate, unsigned typicalAdjacent, bool cache )
: pathNodePool( allocate, typicalAdjacent ),
graph( _graph ),
frame( 0 )
{
MPASSERT( allocate );
MPASSERT( typicalAdjacent );
pathCache = 0;
if ( cache ) {
pathCache = new PathCache( allocate*4 ); // untuned arbitrary constant
}
}
MicroPather::~MicroPather()
{
delete pathCache;
}
void MicroPather::Reset()
{
pathNodePool.Clear();
if ( pathCache ) {
pathCache->Reset();
}
frame = 0;
}
void MicroPather::GoalReached( PathNode* node, void* start, void* end, MP_VECTOR< void* > *_path )
{
MP_VECTOR< void* >& path = *_path;
path.clear();
// We have reached the goal.
// How long is the path? Used to allocate the vector which is returned.
int count = 1;
PathNode* it = node;
while( it->parent )
{
++count;
it = it->parent;
}
// Now that the path has a known length, allocate
// and fill the vector that will be returned.
if ( count < 3 )
{
// Handle the short, special case.
path.resize(2);
path[0] = start;
path[1] = end;
}
else
{
path.resize(count);
path[0] = start;
path[count-1] = end;
count-=2;
it = node->parent;
while ( it->parent )
{
path[count] = it->state;
it = it->parent;
--count;
}
}
if ( pathCache ) {
costVec.clear();
PathNode* pn0 = pathNodePool.FetchPathNode( path[0] );
PathNode* pn1 = 0;
for( unsigned i=0; i<path.size()-1; ++i ) {
pn1 = pathNodePool.FetchPathNode( path[i+1] );
nodeCostVec.clear();
GetNodeNeighbors( pn0, &nodeCostVec );
for( unsigned j=0; j<nodeCostVec.size(); ++j ) {
if ( nodeCostVec[j].node == pn1 ) {
costVec.push_back( nodeCostVec[j].cost );
break;
}
}
MPASSERT( costVec.size() == i+1 );
pn0 = pn1;
}
pathCache->Add( path, costVec );
}
#ifdef DEBUG_PATH
printf( "Path: " );
int counter=0;
#endif
for ( unsigned k=0; k<path.size(); ++k )
{
#ifdef DEBUG_PATH
graph->PrintStateInfo( path[k] );
printf( " " );
++counter;
if ( counter == 8 )
{
printf( "\n" );
counter = 0;
}
#endif
}
#ifdef DEBUG_PATH
printf( "Cost=%.1f Checksum %d\n", node->costFromStart, checksum );
#endif
}
void MicroPather::GetNodeNeighbors( PathNode* node, MP_VECTOR< NodeCost >* pNodeCost )
{
if ( node->numAdjacent == 0 ) {
// it has no neighbors.
pNodeCost->resize( 0 );
}
else if ( node->cacheIndex < 0 )
{
// Not in the cache. Either the first time or just didn't fit. We don't know
// the number of neighbors and need to call back to the client.
stateCostVec.resize( 0 );
graph->AdjacentCost( node->state, &stateCostVec );
#ifdef DEBUG
{
// If this assert fires, you have passed a state
// as its own neighbor state. This is impossible --
// bad things will happen.
for ( unsigned i=0; i<stateCostVec.size(); ++i )
MPASSERT( stateCostVec[i].state != node->state );
}
#endif
pNodeCost->resize( stateCostVec.size() );
node->numAdjacent = stateCostVec.size();
if ( node->numAdjacent > 0 ) {
// Now convert to pathNodes.
// Note that the microsoft std library is actually pretty slow.
// Move things to temp vars to help.
const unsigned stateCostVecSize = stateCostVec.size();
const StateCost* stateCostVecPtr = &stateCostVec[0];
NodeCost* pNodeCostPtr = &(*pNodeCost)[0];
for( unsigned i=0; i<stateCostVecSize; ++i ) {
void* state = stateCostVecPtr[i].state;
pNodeCostPtr[i].cost = stateCostVecPtr[i].cost;
pNodeCostPtr[i].node = pathNodePool.GetPathNode( frame, state, FLT_MAX, FLT_MAX, 0 );
}
// Can this be cached?
int start = 0;
if ( pNodeCost->size() > 0 && pathNodePool.PushCache( pNodeCostPtr, pNodeCost->size(), &start ) ) {
node->cacheIndex = start;
}
}
}
else {
// In the cache!
pNodeCost->resize( node->numAdjacent );
NodeCost* pNodeCostPtr = &(*pNodeCost)[0];
pathNodePool.GetCache( node->cacheIndex, node->numAdjacent, pNodeCostPtr );
// A node is uninitialized (even if memory is allocated) if it is from a previous frame.
// Check for that, and Init() as necessary.
for( int i=0; i<node->numAdjacent; ++i ) {
PathNode* pNode = pNodeCostPtr[i].node;
if ( pNode->frame != frame ) {
pNode->Init( frame, pNode->state, FLT_MAX, FLT_MAX, 0 );
}
}
}
}
#ifdef DEBUG
/*
void MicroPather::DumpStats()
{
int hashTableEntries = 0;
for( int i=0; i<HASH_SIZE; ++i )
if ( hashTable[i] )
++hashTableEntries;
int pathNodeBlocks = 0;
for( PathNode* node = pathNodeMem; node; node = node[ALLOCATE-1].left )
++pathNodeBlocks;
printf( "HashTableEntries=%d/%d PathNodeBlocks=%d [%dk] PathNodes=%d SolverCalled=%d\n",
hashTableEntries, HASH_SIZE, pathNodeBlocks,
pathNodeBlocks*ALLOCATE*sizeof(PathNode)/1024,
pathNodeCount,
frame );
}
*/
#endif
void MicroPather::StatesInPool( MP_VECTOR< void* >* stateVec )
{
stateVec->clear();
pathNodePool.AllStates( frame, stateVec );
}
void PathNodePool::AllStates( unsigned frame, MP_VECTOR< void* >* stateVec )
{
for ( Block* b=blocks; b; b=b->nextBlock )
{
for( unsigned i=0; i<allocate; ++i )
{
if ( b->pathNode[i].frame == frame )
stateVec->push_back( b->pathNode[i].state );
}
}
}
PathCache::PathCache( int _allocated )
{
mem = new Item[_allocated];
memset( mem, 0, sizeof(*mem)*_allocated );
allocated = _allocated;
nItems = 0;
hit = 0;
miss = 0;
}
PathCache::~PathCache()
{
delete [] mem;
}
void PathCache::Reset()
{
if ( nItems ) {
memset( mem, 0, sizeof(*mem)*allocated );
nItems = 0;
hit = 0;
miss = 0;
}
}
void PathCache::Add( const MP_VECTOR< void* >& path, const MP_VECTOR< float >& cost )
{
if ( nItems + (int)path.size() > allocated*3/4 ) {
return;
}
for( unsigned i=0; i<path.size()-1; ++i ) {
// example: a->b->c->d
// Huge memory saving to only store 3 paths to 'd'
// Can put more in cache with also adding path to b, c, & d
// But uses much more memory. Experiment with this commented
// in and out and how to set.
void* end = path[path.size()-1];
Item item = { path[i], end, path[i+1], cost[i] };
AddItem( item );
}
}
void PathCache::AddNoSolution( void* end, void* states[], int count )
{
if ( count + nItems > allocated*3/4 ) {
return;
}
for( int i=0; i<count; ++i ) {
Item item = { states[i], end, 0, FLT_MAX };
AddItem( item );
}
}
int PathCache::Solve( void* start, void* end, MP_VECTOR< void* >* path, float* totalCost )
{
const Item* item = Find( start, end );
if ( item ) {
if ( item->cost == FLT_MAX ) {
++hit;
return MicroPather::NO_SOLUTION;
}
path->clear();
path->push_back( start );
*totalCost = 0;
for ( ;start != end; start=item->next, item=Find(start, end) ) {
MPASSERT( item );
*totalCost += item->cost;
path->push_back( item->next );
}
++hit;
return MicroPather::SOLVED;
}
++miss;
return MicroPather::NOT_CACHED;
}
void PathCache::AddItem( const Item& item )
{
MPASSERT( allocated );
unsigned index = item.Hash() % allocated;
while( true ) {
if ( mem[index].Empty() ) {
mem[index] = item;
++nItems;
#ifdef DEBUG_CACHING
GLOUTPUT(( "Add: start=%x next=%x end=%x\n", item.start, item.next, item.end ));
#endif
break;
}
else if ( mem[index].KeyEqual( item ) ) {
MPASSERT( (mem[index].next && item.next) || (mem[index].next==0 && item.next == 0) );
// do nothing; in cache
break;
}
++index;
if ( index == static_cast<unsigned>(allocated) )
index = 0;
}
}
const PathCache::Item* PathCache::Find( void* start, void* end )
{
MPASSERT( allocated );
Item fake = { start, end, 0, 0 };
unsigned index = fake.Hash() % allocated;
while( true ) {
if ( mem[index].Empty() ) {
return 0;
}
if ( mem[index].KeyEqual( fake )) {
return mem + index;
}
++index;
if ( index == static_cast<unsigned>(allocated) )
index = 0;
}
}
void MicroPather::GetCacheData( CacheData* data )
{
memset( data, 0, sizeof(*data) );
if ( pathCache ) {
data->nBytesAllocated = pathCache->AllocatedBytes();
data->nBytesUsed = pathCache->UsedBytes();
data->memoryFraction = (float)( (double)data->nBytesUsed / (double)data->nBytesAllocated );
data->hit = pathCache->hit;
data->miss = pathCache->miss;
if ( data->hit + data->miss ) {
data->hitFraction = (float)( (double)(data->hit) / (double)(data->hit + data->miss) );
}
else {
data->hitFraction = 0;
}
}
}
int MicroPather::Solve( void* startNode, void* endNode, MP_VECTOR< void* >* path, float* cost )
{
// Important to clear() in case the caller doesn't check the return code. There
// can easily be a left over path from a previous call.
path->clear();
#ifdef DEBUG_PATH
printf( "Path: " );
graph->PrintStateInfo( startNode );
printf( " --> " );
graph->PrintStateInfo( endNode );
printf( " min cost=%f\n", graph->LeastCostEstimate( startNode, endNode ) );
#endif
*cost = 0.0f;
if ( startNode == endNode )
return START_END_SAME;
if ( pathCache ) {
int cacheResult = pathCache->Solve( startNode, endNode, path, cost );
if ( cacheResult == SOLVED || cacheResult == NO_SOLUTION ) {
#ifdef DEBUG_CACHING
GLOUTPUT(( "PathCache hit. result=%s\n", cacheResult == SOLVED ? "solved" : "no_solution" ));
#endif
return cacheResult;
}
#ifdef DEBUG_CACHING
GLOUTPUT(( "PathCache miss\n" ));
#endif
}
++frame;
OpenQueue open( graph );
ClosedSet closed( graph );
PathNode* newPathNode = pathNodePool.GetPathNode( frame,
startNode,
0,
graph->LeastCostEstimate( startNode, endNode ),
0 );
open.Push( newPathNode );
stateCostVec.resize(0);
nodeCostVec.resize(0);
while ( !open.Empty() )
{
PathNode* node = open.Pop();
if ( node->state == endNode )
{
GoalReached( node, startNode, endNode, path );
*cost = node->costFromStart;
#ifdef DEBUG_PATH
DumpStats();
#endif
return SOLVED;
}
else
{
closed.Add( node );
// We have not reached the goal - add the neighbors.
GetNodeNeighbors( node, &nodeCostVec );
for( int i=0; i<node->numAdjacent; ++i )
{
// Not actually a neighbor, but useful. Filter out infinite cost.
if ( nodeCostVec[i].cost == FLT_MAX ) {
continue;
}
PathNode* child = nodeCostVec[i].node;
float newCost = node->costFromStart + nodeCostVec[i].cost;
PathNode* inOpen = child->inOpen ? child : 0;
PathNode* inClosed = child->inClosed ? child : 0;
PathNode* inEither = (PathNode*)( ((MP_UPTR)inOpen) | ((MP_UPTR)inClosed) );
MPASSERT( inEither != node );
MPASSERT( !( inOpen && inClosed ) );
if ( inEither ) {
if ( newCost < child->costFromStart ) {
child->parent = node;
child->costFromStart = newCost;
child->estToGoal = graph->LeastCostEstimate( child->state, endNode );
child->CalcTotalCost();
if ( inOpen ) {
open.Update( child );
}
}
}
else {
child->parent = node;
child->costFromStart = newCost;
child->estToGoal = graph->LeastCostEstimate( child->state, endNode ),
child->CalcTotalCost();
MPASSERT( !child->inOpen && !child->inClosed );
open.Push( child );
}
}
}
}
#ifdef DEBUG_PATH
DumpStats();
#endif
if ( pathCache ) {
// Could add a bunch more with a little tracking.
pathCache->AddNoSolution( endNode, &startNode, 1 );
}
return NO_SOLUTION;
}
int MicroPather::SolveForNearStates( void* startState, MP_VECTOR< StateCost >* near, float maxCost )
{
/* http://en.wikipedia.org/wiki/Dijkstra%27s_algorithm
1 function Dijkstra(Graph, source):
2 for each vertex v in Graph: // Initializations
3 dist[v] := infinity // Unknown distance function from source to v
4 previous[v] := undefined // Previous node in optimal path from source
5 dist[source] := 0 // Distance from source to source
6 Q := the set of all nodes in Graph
// All nodes in the graph are unoptimized - thus are in Q
7 while Q is not empty: // The main loop
8 u := vertex in Q with smallest dist[]
9 if dist[u] = infinity:
10 break // all remaining vertices are inaccessible from source
11 remove u from Q
12 for each neighbor v of u: // where v has not yet been removed from Q.
13 alt := dist[u] + dist_between(u, v)
14 if alt < dist[v]: // Relax (u,v,a)
15 dist[v] := alt
16 previous[v] := u
17 return dist[]
*/
++frame;
OpenQueue open( graph ); // nodes to look at
ClosedSet closed( graph );
nodeCostVec.resize(0);
stateCostVec.resize(0);
PathNode closedSentinel;
closedSentinel.Clear();
closedSentinel.Init( frame, 0, FLT_MAX, FLT_MAX, 0 );
closedSentinel.next = closedSentinel.prev = &closedSentinel;
PathNode* newPathNode = pathNodePool.GetPathNode( frame, startState, 0, 0, 0 );
open.Push( newPathNode );
while ( !open.Empty() )
{
PathNode* node = open.Pop(); // smallest dist
closed.Add( node ); // add to the things we've looked at