-
Notifications
You must be signed in to change notification settings - Fork 1
/
kissfft.hh
299 lines (253 loc) · 10.4 KB
/
kissfft.hh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
#ifndef KISSFFT_CLASS_HH
#include <complex>
#include <vector>
namespace kissfft_utils {
template <typename T_scalar>
struct traits
{
typedef T_scalar scalar_type;
typedef std::complex<scalar_type> cpx_type;
void fill_twiddles( std::complex<T_scalar> * dst ,int nfft,bool inverse)
{
T_scalar phinc = (inverse?2:-2)* acos( (T_scalar) -1) / nfft;
for (int i=0;i<nfft;++i)
dst[i] = exp( std::complex<T_scalar>(0,i*phinc) );
}
void prepare(
std::vector< std::complex<T_scalar> > & dst,
int nfft,bool inverse,
std::vector<int> & stageRadix,
std::vector<int> & stageRemainder )
{
_twiddles.resize(nfft);
fill_twiddles( &_twiddles[0],nfft,inverse);
dst = _twiddles;
//factorize
//start factoring out 4's, then 2's, then 3,5,7,9,...
int n= nfft;
int p=4;
do {
while (n % p) {
switch (p) {
case 4: p = 2; break;
case 2: p = 3; break;
default: p += 2; break;
}
if (p*p>n)
p=n;// no more factors
}
n /= p;
stageRadix.push_back(p);
stageRemainder.push_back(n);
}while(n>1);
}
std::vector<cpx_type> _twiddles;
const cpx_type twiddle(int i) { return _twiddles[i]; }
};
}
template <typename T_Scalar,
typename T_traits=kissfft_utils::traits<T_Scalar>
>
class kissfft
{
public:
typedef T_traits traits_type;
typedef typename traits_type::scalar_type scalar_type;
typedef typename traits_type::cpx_type cpx_type;
kissfft(int nfft,bool inverse,const traits_type & traits=traits_type() )
:_nfft(nfft),_inverse(inverse),_traits(traits)
{
_traits.prepare(_twiddles, _nfft,_inverse ,_stageRadix, _stageRemainder);
}
void transform(const cpx_type * src , cpx_type * dst)
{
kf_work(0, dst, src, 1,1);
}
private:
void kf_work( int stage,cpx_type * Fout, const cpx_type * f, size_t fstride,size_t in_stride)
{
int p = _stageRadix[stage];
int m = _stageRemainder[stage];
cpx_type * Fout_beg = Fout;
cpx_type * Fout_end = Fout + p*m;
if (m==1) {
do{
*Fout = *f;
f += fstride*in_stride;
}while(++Fout != Fout_end );
}else{
do{
// recursive call:
// DFT of size m*p performed by doing
// p instances of smaller DFTs of size m,
// each one takes a decimated version of the input
kf_work(stage+1, Fout , f, fstride*p,in_stride);
f += fstride*in_stride;
}while( (Fout += m) != Fout_end );
}
Fout=Fout_beg;
// recombine the p smaller DFTs
switch (p) {
case 2: kf_bfly2(Fout,fstride,m); break;
case 3: kf_bfly3(Fout,fstride,m); break;
case 4: kf_bfly4(Fout,fstride,m); break;
case 5: kf_bfly5(Fout,fstride,m); break;
default: kf_bfly_generic(Fout,fstride,m,p); break;
}
}
// these were #define macros in the original kiss_fft
void C_ADD( cpx_type & c,const cpx_type & a,const cpx_type & b) { c=a+b;}
void C_MUL( cpx_type & c,const cpx_type & a,const cpx_type & b) { c=a*b;}
void C_SUB( cpx_type & c,const cpx_type & a,const cpx_type & b) { c=a-b;}
void C_ADDTO( cpx_type & c,const cpx_type & a) { c+=a;}
void C_FIXDIV( cpx_type & ,int ) {} // NO-OP for float types
scalar_type S_MUL( const scalar_type & a,const scalar_type & b) { return a*b;}
scalar_type HALF_OF( const scalar_type & a) { return a*.5;}
void C_MULBYSCALAR(cpx_type & c,const scalar_type & a) {c*=a;}
void kf_bfly2( cpx_type * Fout, const size_t fstride, int m)
{
for (int k=0;k<m;++k) {
cpx_type t = Fout[m+k] * _traits.twiddle(k*fstride);
Fout[m+k] = Fout[k] - t;
Fout[k] += t;
}
}
void kf_bfly4( cpx_type * Fout, const size_t fstride, const size_t m)
{
cpx_type scratch[7];
int negative_if_inverse = _inverse * -2 +1;
for (size_t k=0;k<m;++k) {
scratch[0] = Fout[k+m] * _traits.twiddle(k*fstride);
scratch[1] = Fout[k+2*m] * _traits.twiddle(k*fstride*2);
scratch[2] = Fout[k+3*m] * _traits.twiddle(k*fstride*3);
scratch[5] = Fout[k] - scratch[1];
Fout[k] += scratch[1];
scratch[3] = scratch[0] + scratch[2];
scratch[4] = scratch[0] - scratch[2];
scratch[4] = cpx_type( scratch[4].imag()*negative_if_inverse , -scratch[4].real()* negative_if_inverse );
Fout[k+2*m] = Fout[k] - scratch[3];
Fout[k] += scratch[3];
Fout[k+m] = scratch[5] + scratch[4];
Fout[k+3*m] = scratch[5] - scratch[4];
}
}
void kf_bfly3( cpx_type * Fout, const size_t fstride, const size_t m)
{
size_t k=m;
const size_t m2 = 2*m;
cpx_type *tw1,*tw2;
cpx_type scratch[5];
cpx_type epi3;
epi3 = _twiddles[fstride*m];
tw1=tw2=&_twiddles[0];
do{
C_FIXDIV(*Fout,3); C_FIXDIV(Fout[m],3); C_FIXDIV(Fout[m2],3);
C_MUL(scratch[1],Fout[m] , *tw1);
C_MUL(scratch[2],Fout[m2] , *tw2);
C_ADD(scratch[3],scratch[1],scratch[2]);
C_SUB(scratch[0],scratch[1],scratch[2]);
tw1 += fstride;
tw2 += fstride*2;
Fout[m] = cpx_type( Fout->real() - HALF_OF(scratch[3].real() ) , Fout->imag() - HALF_OF(scratch[3].imag() ) );
C_MULBYSCALAR( scratch[0] , epi3.imag() );
C_ADDTO(*Fout,scratch[3]);
Fout[m2] = cpx_type( Fout[m].real() + scratch[0].imag() , Fout[m].imag() - scratch[0].real() );
C_ADDTO( Fout[m] , cpx_type( -scratch[0].imag(),scratch[0].real() ) );
++Fout;
}while(--k);
}
void kf_bfly5( cpx_type * Fout, const size_t fstride, const size_t m)
{
cpx_type *Fout0,*Fout1,*Fout2,*Fout3,*Fout4;
size_t u;
cpx_type scratch[13];
cpx_type * twiddles = &_twiddles[0];
cpx_type *tw;
cpx_type ya,yb;
ya = twiddles[fstride*m];
yb = twiddles[fstride*2*m];
Fout0=Fout;
Fout1=Fout0+m;
Fout2=Fout0+2*m;
Fout3=Fout0+3*m;
Fout4=Fout0+4*m;
tw=twiddles;
for ( u=0; u<m; ++u ) {
C_FIXDIV( *Fout0,5); C_FIXDIV( *Fout1,5); C_FIXDIV( *Fout2,5); C_FIXDIV( *Fout3,5); C_FIXDIV( *Fout4,5);
scratch[0] = *Fout0;
C_MUL(scratch[1] ,*Fout1, tw[u*fstride]);
C_MUL(scratch[2] ,*Fout2, tw[2*u*fstride]);
C_MUL(scratch[3] ,*Fout3, tw[3*u*fstride]);
C_MUL(scratch[4] ,*Fout4, tw[4*u*fstride]);
C_ADD( scratch[7],scratch[1],scratch[4]);
C_SUB( scratch[10],scratch[1],scratch[4]);
C_ADD( scratch[8],scratch[2],scratch[3]);
C_SUB( scratch[9],scratch[2],scratch[3]);
C_ADDTO( *Fout0, scratch[7]);
C_ADDTO( *Fout0, scratch[8]);
scratch[5] = scratch[0] + cpx_type(
S_MUL(scratch[7].real(),ya.real() ) + S_MUL(scratch[8].real() ,yb.real() ),
S_MUL(scratch[7].imag(),ya.real()) + S_MUL(scratch[8].imag(),yb.real())
);
scratch[6] = cpx_type(
S_MUL(scratch[10].imag(),ya.imag()) + S_MUL(scratch[9].imag(),yb.imag()),
-S_MUL(scratch[10].real(),ya.imag()) - S_MUL(scratch[9].real(),yb.imag())
);
C_SUB(*Fout1,scratch[5],scratch[6]);
C_ADD(*Fout4,scratch[5],scratch[6]);
scratch[11] = scratch[0] +
cpx_type(
S_MUL(scratch[7].real(),yb.real()) + S_MUL(scratch[8].real(),ya.real()),
S_MUL(scratch[7].imag(),yb.real()) + S_MUL(scratch[8].imag(),ya.real())
);
scratch[12] = cpx_type(
-S_MUL(scratch[10].imag(),yb.imag()) + S_MUL(scratch[9].imag(),ya.imag()),
S_MUL(scratch[10].real(),yb.imag()) - S_MUL(scratch[9].real(),ya.imag())
);
C_ADD(*Fout2,scratch[11],scratch[12]);
C_SUB(*Fout3,scratch[11],scratch[12]);
++Fout0;++Fout1;++Fout2;++Fout3;++Fout4;
}
}
/* perform the butterfly for one stage of a mixed radix FFT */
void kf_bfly_generic(
cpx_type * Fout,
const size_t fstride,
int m,
int p
)
{
int u,k,q1,q;
cpx_type * twiddles = &_twiddles[0];
cpx_type t;
int Norig = _nfft;
cpx_type scratchbuf[p];
for ( u=0; u<m; ++u ) {
k=u;
for ( q1=0 ; q1<p ; ++q1 ) {
scratchbuf[q1] = Fout[ k ];
C_FIXDIV(scratchbuf[q1],p);
k += m;
}
k=u;
for ( q1=0 ; q1<p ; ++q1 ) {
int twidx=0;
Fout[ k ] = scratchbuf[0];
for (q=1;q<p;++q ) {
twidx += fstride * k;
if (twidx>=Norig) twidx-=Norig;
C_MUL(t,scratchbuf[q] , twiddles[twidx] );
C_ADDTO( Fout[ k ] ,t);
}
k += m;
}
}
}
int _nfft;
bool _inverse;
std::vector<cpx_type> _twiddles;
std::vector<int> _stageRadix;
std::vector<int> _stageRemainder;
traits_type _traits;
};
#endif