forked from steveicarus/iverilog
-
Notifications
You must be signed in to change notification settings - Fork 0
/
elab_net.cc
1182 lines (1018 loc) · 37.3 KB
/
elab_net.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
* Copyright (c) 1999-2023 Stephen Williams ([email protected])
* Copyright CERN 2012 / Stephen Williams ([email protected])
*
* This source code is free software; you can redistribute it
* and/or modify it in source code form under the terms of the GNU
* General Public License as published by the Free Software
* Foundation; either version 2 of the License, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
# include "config.h"
# include "PExpr.h"
# include "PPackage.h"
# include "netlist.h"
# include "netmisc.h"
# include "netstruct.h"
# include "netvector.h"
# include "compiler.h"
# include <cstdlib>
# include <cstring>
# include <iostream>
# include "ivl_assert.h"
using namespace std;
/*
* The concatenation is also OK an an l-value. This method elaborates
* it as a structural l-value. The return values is the *input* net of
* the l-value, which may feed via part selects to the final
* destination. The caller can connect gate outputs to this signal to
* make the l-value connections.
*/
NetNet* PEConcat::elaborate_lnet_common_(Design*des, NetScope*scope,
bool bidirectional_flag) const
{
ivl_assert(*this, scope);
std::vector<NetNet*> nets(parms_.size());
unsigned width = 0;
unsigned errors = 0;
if (repeat_) {
cerr << get_fileline() << ": sorry: I do not know how to"
" elaborate repeat concatenation nets." << endl;
return 0;
}
/* Elaborate the operands of the concatenation. */
for (unsigned idx = 0 ; idx < nets.size() ; idx += 1) {
if (debug_elaborate) {
cerr << get_fileline() << ": debug: Elaborate subexpression "
<< idx << " of " << nets.size() << " l-values: "
<< *parms_[idx] << endl;
}
if (parms_[idx] == 0) {
cerr << get_fileline() << ": error: Empty expressions "
<< "not allowed in concatenations." << endl;
errors += 1;
continue;
}
if (bidirectional_flag) {
nets[idx] = parms_[idx]->elaborate_bi_net(des, scope);
} else {
nets[idx] = parms_[idx]->elaborate_lnet(des, scope);
}
if (nets[idx] == 0) {
errors += 1;
} else if (nets[idx]->data_type() == IVL_VT_REAL) {
cerr << parms_[idx]->get_fileline() << ": error: "
<< "concatenation operand can no be real: "
<< *parms_[idx] << endl;
errors += 1;
continue;
} else {
width += nets[idx]->vector_width();
}
}
if (errors) {
des->errors += errors;
return 0;
}
/* Make the temporary signal that connects to all the
operands, and connect it up. Scan the operands of the
concat operator from most significant to least significant,
which is the order they are given in the concat list. */
netvector_t*tmp2_vec = new netvector_t(nets[0]->data_type(),width-1,0);
NetNet*osig = new NetNet(scope, scope->local_symbol(),
NetNet::IMPLICIT, tmp2_vec);
/* Assume that the data types of the nets are all the same, so
we can take the data type of any, the first will do. */
osig->local_flag(true);
osig->set_line(*this);
if (bidirectional_flag) {
if (debug_elaborate) {
cerr << get_fileline() << ": debug: Generating tran(VP) "
<< "to connect input l-value to subexpressions."
<< endl;
}
for (unsigned idx = 0 ; idx < nets.size() ; idx += 1) {
unsigned wid = nets[idx]->vector_width();
unsigned off = width - wid;
NetTran*ps = new NetTran(scope, scope->local_symbol(),
osig->vector_width(), wid, off);
des->add_node(ps);
ps->set_line(*this);
connect(ps->pin(0), osig->pin(0));
connect(ps->pin(1), nets[idx]->pin(0));
ivl_assert(*this, wid <= width);
width -= wid;
}
} else {
if (debug_elaborate) {
cerr << get_fileline() << ": debug: Generating part selects "
<< "to connect input l-value to subexpressions."
<< endl;
}
NetPartSelect::dir_t part_dir = NetPartSelect::VP;
for (unsigned idx = 0 ; idx < nets.size() ; idx += 1) {
unsigned wid = nets[idx]->vector_width();
unsigned off = width - wid;
NetPartSelect*ps = new NetPartSelect(osig, off, wid, part_dir);
des->add_node(ps);
ps->set_line(*this);
connect(ps->pin(1), osig->pin(0));
connect(ps->pin(0), nets[idx]->pin(0));
ivl_assert(*this, wid <= width);
width -= wid;
}
ivl_assert(*this, width == 0);
}
return osig;
}
NetNet* PEConcat::elaborate_lnet(Design*des, NetScope*scope) const
{
return elaborate_lnet_common_(des, scope, false);
}
NetNet* PEConcat::elaborate_bi_net(Design*des, NetScope*scope) const
{
return elaborate_lnet_common_(des, scope, true);
}
bool PEConcat::is_collapsible_net(Design*des, NetScope*scope,
NetNet::PortType port_type) const
{
ivl_assert(*this, scope);
// Repeat concatenations are not currently supported.
if (repeat_)
return false;
// Test the operands of the concatenation.
for (unsigned idx = 0 ; idx < parms_.size() ; idx += 1) {
// Empty expressions are not allowed in concatenations
if (parms_[idx] == 0)
return false;
if (!parms_[idx]->is_collapsible_net(des, scope, port_type))
return false;
}
return true;
}
/*
* This private method evaluates the part selects (if any) for the
* signal. The sig argument is the NetNet already located for the
* PEIdent name. The midx and lidx arguments are loaded with the
* results, which may be the whole vector, or a single bit, or
* anything in between. The values are in canonical indices.
*/
bool PEIdent::eval_part_select_(Design*des, NetScope*scope, NetNet*sig,
long&midx, long&lidx) const
{
list<long> prefix_indices;
bool rc = calculate_packed_indices_(des, scope, sig, prefix_indices);
ivl_assert(*this, rc);
const name_component_t&name_tail = path_.back();
// Only treat as part/bit selects any index that is beyond the
// word selects for an array. This is not an array, then
// dimensions==0 and any index is treated as a select.
if (name_tail.index.size() <= sig->unpacked_dimensions()) {
midx = sig->vector_width()-1;
lidx = 0;
return true;
}
ivl_assert(*this, !name_tail.index.empty());
const index_component_t&index_tail = name_tail.index.back();
switch (index_tail.sel) {
default:
cerr << get_fileline() << ": internal error: "
<< "Unexpected sel_ value = " << index_tail.sel << endl;
ivl_assert(*this, 0);
break;
case index_component_t::SEL_IDX_DO:
case index_component_t::SEL_IDX_UP: {
NetExpr*tmp_ex = elab_and_eval(des, scope, index_tail.msb, -1, true);
NetEConst*tmp = dynamic_cast<NetEConst*>(tmp_ex);
if (!tmp) {
cerr << get_fileline() << ": error: Indexed part select "
"base expression must be a constant integral value "
"in this context." << endl;
cerr << get_fileline() << ": : This expression "
"violates that rule: " << *index_tail.msb << endl;
des->errors += 1;
return 0;
}
/* The width (a constant) is calculated here. */
unsigned long wid = 0;
bool flag = calculate_up_do_width_(des, scope, wid);
if (! flag) return false;
/* We have an undefined index and that is out of range. */
if (! tmp->value().is_defined()) {
if (warn_ob_select) {
cerr << get_fileline() << ": warning: "
<< sig->name();
if (sig->unpacked_dimensions() > 0) cerr << "[]";
cerr << "['bx";
if (index_tail.sel ==
index_component_t::SEL_IDX_UP) {
cerr << "+:";
} else {
cerr << "-:";
}
cerr << wid << "] is always outside the vector."
<< endl;
}
return false;
}
long midx_val = tmp->value().as_long();
delete tmp_ex;
if (prefix_indices.size()+1 < sig->packed_dims().size()) {
// Here we are selecting one or more sub-arrays.
// Make this work by finding the indexed sub-arrays and
// creating a generated slice that spans the whole range.
long loff, moff;
unsigned long lwid, mwid;
bool mrc, lrc;
mrc = sig->sb_to_slice(prefix_indices, midx_val, moff, mwid);
if (index_tail.sel == index_component_t::SEL_IDX_UP)
lrc = sig->sb_to_slice(prefix_indices, midx_val+wid-1, loff, lwid);
else
lrc = sig->sb_to_slice(prefix_indices, midx_val-wid+1, loff, lwid);
if (!mrc || !lrc) {
cerr << get_fileline() << ": error: ";
cerr << "Part-select [" << midx_val;
if (index_tail.sel == index_component_t::SEL_IDX_UP) {
cerr << "+:";
} else {
cerr << "-:";
}
cerr << wid << "] exceeds the declared bounds for ";
cerr << sig->name();
if (sig->unpacked_dimensions() > 0) cerr << "[]";
cerr << "." << endl;
des->errors += 1;
return 0;
}
ivl_assert(*this, lwid == mwid);
if (moff > loff) {
lidx = loff;
midx = moff + mwid - 1;
} else {
lidx = moff;
midx = loff + lwid - 1;
}
} else {
midx = sig->sb_to_idx(prefix_indices, midx_val);
if (index_tail.sel == index_component_t::SEL_IDX_UP)
lidx = sig->sb_to_idx(prefix_indices, midx_val+wid-1);
else
lidx = sig->sb_to_idx(prefix_indices, midx_val-wid+1);
if (midx < lidx) {
long tmpx = midx;
midx = lidx;
lidx = tmpx;
}
/* Warn about an indexed part select that is out of range. */
if (warn_ob_select && (lidx < 0)) {
cerr << get_fileline() << ": warning: " << sig->name();
if (sig->unpacked_dimensions() > 0) cerr << "[]";
cerr << "[" << midx_val;
if (index_tail.sel == index_component_t::SEL_IDX_UP) {
cerr << "+:";
} else {
cerr << "-:";
}
cerr << wid << "] is selecting before vector." << endl;
}
if (warn_ob_select && (midx >= (long)sig->vector_width())) {
cerr << get_fileline() << ": warning: " << sig->name();
if (sig->unpacked_dimensions() > 0) {
cerr << "[]";
}
cerr << "[" << midx_val;
if (index_tail.sel == index_component_t::SEL_IDX_UP) {
cerr << "+:";
} else {
cerr << "-:";
}
cerr << wid << "] is selecting after vector." << endl;
}
/* This is completely out side the signal so just skip it. */
if (lidx >= (long)sig->vector_width() || midx < 0) {
return false;
}
}
break;
}
case index_component_t::SEL_PART: {
long msb, lsb;
bool part_defined_flag;
/* bool flag = */ calculate_parts_(des, scope, msb, lsb, part_defined_flag);
/* We have an undefined index and that is out of range. */
if (!part_defined_flag) {
if (warn_ob_select) {
cerr << get_fileline() << ": warning: "
<< sig->name();
if (sig->unpacked_dimensions() > 0) cerr << "[]";
cerr << "['bx] is always outside the vector."
<< endl;
}
return false;
}
if (prefix_indices.size()+1 < sig->packed_dims().size()) {
// Here we have a slice that doesn't have enough indices
// to get to a single slice. For example:
// wire [9:0][5:1] foo
// ... foo[4:3] ...
// Make this work by finding the indexed slices and
// creating a generated slice that spans the whole
// range.
long loff, moff;
unsigned long lwid, mwid;
bool lrc, mrc;
lrc = sig->sb_to_slice(prefix_indices, lsb, loff, lwid);
mrc = sig->sb_to_slice(prefix_indices, msb, moff, mwid);
if (!mrc || !lrc) {
cerr << get_fileline() << ": error: ";
cerr << "Part-select [" << msb << ":" << lsb;
cerr << "] exceeds the declared bounds for ";
cerr << sig->name();
if (sig->unpacked_dimensions() > 0) cerr << "[]";
cerr << "." << endl;
des->errors += 1;
return 0;
}
ivl_assert(*this, lwid == mwid);
if (moff > loff) {
lidx = loff;
midx = moff + mwid - 1;
} else {
lidx = moff;
midx = loff + lwid - 1;
}
} else {
long lidx_tmp = sig->sb_to_idx(prefix_indices, lsb);
long midx_tmp = sig->sb_to_idx(prefix_indices, msb);
/* Detect reversed indices of a part select. */
if (lidx_tmp > midx_tmp) {
cerr << get_fileline() << ": error: Part select "
<< sig->name() << "[" << msb << ":"
<< lsb << "] indices reversed." << endl;
cerr << get_fileline() << ": : Did you mean "
<< sig->name() << "[" << lsb << ":"
<< msb << "]?" << endl;
long tmp = midx_tmp;
midx_tmp = lidx_tmp;
lidx_tmp = tmp;
des->errors += 1;
}
/* Warn about a part select that is out of range. */
if (midx_tmp >= (long)sig->vector_width() || lidx_tmp < 0) {
cerr << get_fileline() << ": warning: Part select "
<< sig->name();
if (sig->unpacked_dimensions() > 0) {
cerr << "[]";
}
cerr << "[" << msb << ":" << lsb
<< "] is out of range." << endl;
}
/* This is completely out side the signal so just skip it. */
if (lidx_tmp >= (long)sig->vector_width() || midx_tmp < 0) {
return false;
}
midx = midx_tmp;
lidx = lidx_tmp;
}
break;
}
case index_component_t::SEL_BIT:
if (name_tail.index.size() > sig->unpacked_dimensions()) {
long msb;
bool bit_defined_flag;
/* bool flag = */ calculate_bits_(des, scope, msb, bit_defined_flag);
/* We have an undefined index and that is out of range. */
if (!bit_defined_flag) {
if (warn_ob_select) {
cerr << get_fileline() << ": warning: "
<< sig->name();
if (sig->unpacked_dimensions() > 0) cerr << "[]";
cerr << "['bx] is always outside the vector."
<< endl;
}
return false;
}
if (prefix_indices.size()+2 <= sig->packed_dims().size()) {
long tmp_loff;
unsigned long tmp_lwid;
bool rcl = sig->sb_to_slice(prefix_indices, msb,
tmp_loff, tmp_lwid);
if(rcl) {
midx = tmp_loff + tmp_lwid - 1;
lidx = tmp_loff;
} else {
cerr << get_fileline() << ": error: Index " << sig->name()
<< "[" << msb << "] is out of range."
<< endl;
des->errors += 1;
midx = 0;
lidx = 0;
}
} else {
midx = sig->sb_to_idx(prefix_indices, msb);
if (midx >= (long)sig->vector_width()) {
cerr << get_fileline() << ": error: Index " << sig->name()
<< "[" << msb << "] is out of range."
<< endl;
des->errors += 1;
midx = 0;
}
lidx = midx;
}
} else {
cerr << get_fileline() << ": internal error: "
<< "Bit select " << path_ << endl;
ivl_assert(*this, 0);
midx = sig->vector_width() - 1;
lidx = 0;
}
break;
}
return true;
}
/*
* This is the common code for l-value nets and bi-directional
* nets. There is very little that is different between the two cases,
* so most of the work for both is done here.
*/
NetNet* PEIdent::elaborate_lnet_common_(Design*des, NetScope*scope,
bool bidirectional_flag) const
{
ivl_assert(*this, scope);
NetNet* sig = 0;
const NetExpr*par = 0;
NetEvent* eve = 0;
symbol_search(this, des, scope, path_.name, sig, par, eve);
if (eve != 0) {
cerr << get_fileline() << ": error: named events (" << path_
<< ") cannot be l-values in continuous "
<< "assignments." << endl;
des->errors += 1;
return 0;
}
pform_name_t base_path = path_.name;
pform_name_t member_path;
while (sig == 0 && !base_path.empty()) {
symbol_search(this, des, scope, base_path, sig, par, eve);
// Found it!
if (sig != 0) break;
// Not found. Try to pop another name off the base_path
// and push it to the front of the member_path.
member_path.push_front( base_path.back() );
base_path.pop_back();
}
if (sig == 0) {
cerr << get_fileline() << ": error: Net " << path_
<< " is not defined in this context." << endl;
des->errors += 1;
return 0;
}
if (debug_elaborate) {
cerr << get_fileline() << ": " << __func__ << ": "
<< "Found l-value path_=" << path_
<< " as sig=" << sig->name()
<< " base_path=" << base_path
<< " member_path=" << member_path
<< " unpacked_dimensions()=" << sig->unpacked_dimensions()
<< endl;
}
if (sig->get_const()) {
cerr << get_fileline() << ": error: Continuous assignment to const"
<< " signal `" << sig->name() << "` is not allowed." << endl;
des->errors++;
return nullptr;
}
// If this is SystemVerilog and the variable is not yet
// assigned by anything, then convert it to an unresolved
// wire.
if (gn_var_can_be_uwire()
&& (sig->type() == NetNet::REG)
&& (sig->peek_lref() == 0) ) {
sig->type(NetNet::UNRESOLVED_WIRE);
}
// Don't allow registers as assign l-values.
if (sig->type() == NetNet::REG) {
cerr << get_fileline() << ": error: reg " << sig->name()
<< "; cannot be driven by primitives"
<< " or continuous assignment." << endl;
des->errors += 1;
return 0;
}
// Some parts below need the tail component. This is a convenient
// reference to it.
const name_component_t&path_tail = path_.back();
// Default part select is the entire word.
unsigned midx = sig->vector_width()-1, lidx = 0;
// The default word select is the first.
long widx = 0;
// Set this to true if we calculate the word index. This is
// used to distinguish between unpacked array assignment and
// array word assignment.
bool widx_flag = false;
list<long> unpacked_indices_const;
// Detect the net is a structure and there was a method path
// detected. We have already broken the path_ into the path to
// the net, and the path of member names. For example, if the
// path_ is a.b.x.y, we have determined that a.b is a reference
// to the net, and that x.y are the member_path. So in this case
// we handle the member_path.
const netstruct_t*struct_type = 0;
if ((struct_type = sig->struct_type()) && !member_path.empty()) {
if (debug_elaborate) {
cerr << get_fileline() << ": PEIdent::elaborate_lnet_common_: "
<< "Signal " << sig->name() << " is a structure, "
<< "try to match member path " << member_path << endl;
}
unsigned long member_off = 0;
unsigned long member_width = sig->vector_width();
// Might be an array of structs, like a.b[N].x.y. (A packed
// array.) Handle that here by taking a part select that
// reflects the array index.
if (sig->packed_dimensions() > 1) {
list<index_component_t>tmp_index = base_path.back().index;
index_component_t member_select;
member_select.sel = index_component_t::SEL_BIT;
member_select.msb = new PENumber(new verinum(member_off));
tmp_index.push_back(member_select);
NetExpr*packed_base = collapse_array_indices(des, scope, sig, tmp_index);
if (debug_elaborate) {
cerr << get_fileline() << ": " << __func__ << ": "
<< "packed_base=" << *packed_base
<< endl;
}
long tmp;
if (packed_base && eval_as_long(tmp, packed_base)) {
member_off = tmp;
member_width = struct_type->packed_width();
delete packed_base;
packed_base = 0;
}
// Only support constant dimensions here.
ivl_assert(*this, packed_base == 0);
}
// Now run through the member names, possibly nested, to take
// further part selects reflected by the member name. So for
// example, (.x.y) member x has an offset and width within the
// containing vector, and member y an offset and width within
// that.
pform_name_t use_path = member_path;
while (! use_path.empty()) {
const name_component_t member_comp = use_path.front();
const perm_string&member_name = member_comp.name;
unsigned long tmp_off;
const struct netstruct_t::member_t*member = struct_type->packed_member(member_name, tmp_off);
if(!member) {
cerr << get_fileline() << ": error: missing element " << path() << endl;
des->errors += 1;
return 0;
}
member_off += tmp_off;
member_width = member->net_type->packed_width();
if (const netstruct_t*tmp_struct = dynamic_cast<const netstruct_t*> (member->net_type)) {
struct_type = tmp_struct;
} else {
struct_type = 0;
}
use_path.pop_front();
}
// Look for part selects on the final member. For example if
// the path is a.b.x.y[3:0], the end of the member_path will
// have an index that needs to be handled.
// For now, assume there is unly a single part/bit select, and
// assume it's constant.
if (member_path.back().index.size() > 0) {
list<index_component_t>tmp_index = member_path.back().index;
if (debug_elaborate) {
cerr << get_fileline() << ": " << __func__ << ": "
<< "Process trailing bit/part select. "
<< "index.size()=" << tmp_index.size()
<< endl;
}
ivl_assert(*this, tmp_index.size() == 1);
const index_component_t&tail_sel = tmp_index.back();
ivl_assert(*this, tail_sel.sel == index_component_t::SEL_PART || tail_sel.sel == index_component_t::SEL_BIT);
long tmp_off;
unsigned long tmp_wid;
bool rc = calculate_part(this, des, scope, tail_sel, tmp_off, tmp_wid);
ivl_assert(*this, rc);
member_off += tmp_off;
member_width = tmp_wid;
}
if (debug_elaborate) {
cerr << get_fileline() << ": " << __func__ << ": "
<< "Final, calculated member " << member_path
<< " offset=" << member_off
<< " width=" << member_width
<< endl;
}
// Rewrite a member select of a packed structure as a
// part select of the base variable.
lidx = member_off;
midx = lidx + member_width - 1;
// Elaborate an expression from the packed indices and
// the member offset (into the structure) to get a
// canonical expression into the packed signal vector.
if (sig->packed_dimensions() > 1) {
list<index_component_t>tmp_index = base_path.back().index;
index_component_t member_select;
member_select.sel = index_component_t::SEL_BIT;
member_select.msb = new PENumber(new verinum(member_off));
tmp_index.push_back(member_select);
NetExpr*packed_base = collapse_array_indices(des, scope, sig, tmp_index);
if (debug_elaborate) {
cerr << get_fileline() << ": PEIdent::elaborate_lnet_common_: "
<< "packed_base=" << *packed_base
<< ", member_off=" << member_off << endl;
}
}
} else if (gn_system_verilog() && sig->unpacked_dimensions() > 0 && path_tail.index.empty()) {
// In this case, we are doing a continuous assignment to
// an unpacked array. The NetNet representation is a
// NetNet with a pin for each array element, so there is
// nothing more needed here.
//
// This can come up from code like this:
// logic [...] data [0:3];
// assign data = ...;
// In this case, "sig" is "data", and sig->pin_count()
// is 4 to account for the unpacked size.
if (debug_elaborate) {
cerr << get_fileline() << ": PEIdent::elaborate_lnet_common_: "
<< "Net assign to unpacked array \"" << sig->name()
<< "\" with " << sig->pin_count() << " elements." << endl;
}
} else if (sig->unpacked_dimensions() > 0) {
// Make sure there are enough indices to address an array element.
if (path_tail.index.size() < sig->unpacked_dimensions()) {
cerr << get_fileline() << ": error: Array " << path()
<< " needs " << sig->unpacked_dimensions() << " indices,"
<< " but got only " << path_tail.index.size() << ". (net)" << endl;
des->errors += 1;
return 0;
}
// Evaluate all the index expressions into an
// "unpacked_indices" array.
list<NetExpr*>unpacked_indices;
indices_flags flags;
indices_to_expressions(des, scope, this,
path_tail.index, sig->unpacked_dimensions(),
true,
flags,
unpacked_indices,
unpacked_indices_const);
if (flags.invalid) {
return 0;
} else if (flags.variable) {
cerr << get_fileline() << ": error: array '" << sig->name()
<< "' index must be a constant in this context." << endl;
des->errors += 1;
return 0;
} else if (flags.undefined) {
cerr << get_fileline() << ": warning: "
<< "ignoring undefined l-value array access "
<< sig->name() << as_indices(unpacked_indices)
<< "." << endl;
widx = -1;
widx_flag = true;
} else {
NetExpr*canon_index = 0;
ivl_assert(*this, unpacked_indices_const.size() == sig->unpacked_dimensions());
canon_index = normalize_variable_unpacked(sig, unpacked_indices_const);
if (canon_index == 0) {
cerr << get_fileline() << ": warning: "
<< "ignoring out of bounds l-value array access "
<< sig->name() << as_indices(unpacked_indices_const)
<< "." << endl;
widx = -1;
widx_flag = true;
} else {
NetEConst*canon_const = dynamic_cast<NetEConst*>(canon_index);
ivl_assert(*this, canon_const);
widx = canon_const->value().as_long();
widx_flag = true;
delete canon_index;
}
}
if (debug_elaborate)
cerr << get_fileline() << ": debug: Use [" << widx << "]"
<< " to index l-value array." << endl;
/* The array has a part/bit select at the end. */
if (path_tail.index.size() > sig->unpacked_dimensions()) {
if (sig->get_scalar()) {
cerr << get_fileline() << ": error: "
<< "can not select part of ";
if (sig->data_type() == IVL_VT_REAL) cerr << "real";
else cerr << "scalar";
cerr << " array word: " << sig->name()
<< as_indices(unpacked_indices_const) << endl;
des->errors += 1;
return 0;
}
long midx_tmp, lidx_tmp;
if (! eval_part_select_(des, scope, sig, midx_tmp, lidx_tmp))
return 0;
if (lidx_tmp < 0) {
cerr << get_fileline() << ": sorry: part selects "
"straddling the start of signal (" << path_
<< ") are not currently supported." << endl;
des->errors += 1;
return 0;
}
midx = midx_tmp;
lidx = lidx_tmp;
}
} else if (!path_tail.index.empty()) {
if (debug_elaborate) {
cerr << get_fileline() << ": PEIdent::elaborate_lnet_common_: "
<< "path_tail.index.size()=" << path_tail.index.size()
<< endl;
}
// There are index expressions on the name, so this is a
// bit/slice select of the name. Calculate a canonical
// part select.
if (sig->get_scalar()) {
cerr << get_fileline() << ": error: "
<< "can not select part of ";
if (sig->data_type() == IVL_VT_REAL) cerr << "real: ";
else cerr << "scalar: ";
cerr << sig->name() << endl;
des->errors += 1;
return 0;
}
long midx_tmp, lidx_tmp;
if (! eval_part_select_(des, scope, sig, midx_tmp, lidx_tmp))
return 0;
if (lidx_tmp < 0) {
cerr << get_fileline() << ": sorry: part selects "
"straddling the start of signal (" << path_
<< ") are not currently supported." << endl;
des->errors += 1;
return 0;
}
midx = midx_tmp;
lidx = lidx_tmp;
}
unsigned subnet_wid = midx-lidx+1;
/* Check if the l-value bits are double-driven. */
if (sig->type() == NetNet::UNRESOLVED_WIRE && sig->test_and_set_part_driver(midx,lidx, widx_flag? widx : 0)) {
cerr << get_fileline() << ": error: Unresolved net/uwire "
<< sig->name() << " cannot have multiple drivers." << endl;
if (debug_elaborate) {
cerr << get_fileline() << ": : Overlap in "
<< "[" << midx << ":" << lidx << "] (canonical)"
<< ", widx=" << (widx_flag? widx : 0)
<< ", vector width=" << sig->vector_width()
<< endl;
}
des->errors += 1;
return 0;
}
if (sig->pin_count() > 1 && widx_flag) {
if (widx < 0 || widx >= (long) sig->pin_count())
return 0;
NetNet*tmp = new NetNet(scope, scope->local_symbol(),
sig->type(), sig->net_type());
tmp->set_line(*this);
tmp->local_flag(true);
connect(sig->pin(widx), tmp->pin(0));
sig = tmp;
} else if (sig->pin_count() > 1) {
// If this turns out to be an l-value unpacked array,
// then let the caller handle it. It will probably be
// converted into an array of assignments.
return sig;
}
/* If the desired l-value vector is narrower than the
signal itself, then use a NetPartSelect node to
arrange for connection to the desired bits. All this
can be skipped if the desired width matches the
original vector. */
if (subnet_wid != sig->vector_width()) {
/* If we are processing a tran or inout, then the
partselect is bi-directional. Otherwise, it is a
Part-to-Vector select. */
if (debug_elaborate)
cerr << get_fileline() << ": debug: "
<< "Elaborate lnet part select "
<< sig->name()
<< "[base=" << lidx
<< " wid=" << subnet_wid <<"]"
<< endl;
netvector_t*tmp2_vec = new netvector_t(sig->data_type(),
subnet_wid-1,0);
NetNet*subsig = new NetNet(sig->scope(),
sig->scope()->local_symbol(),
NetNet::WIRE, tmp2_vec);
subsig->local_flag(true);
subsig->set_line(*this);
if (bidirectional_flag) {
// Make a tran(VP)
NetTran*sub = new NetTran(scope, scope->local_symbol(),
sig->vector_width(),
subnet_wid, lidx);
sub->set_line(*this);
des->add_node(sub);
connect(sub->pin(0), sig->pin(0));
connect(sub->pin(1), subsig->pin(0));
} else {
NetPartSelect*sub = new NetPartSelect(sig, lidx, subnet_wid,
NetPartSelect::PV);
des->add_node(sub);
sub->set_line(*this);
connect(sub->pin(0), subsig->pin(0));
collapse_partselect_pv_to_concat(des, sig);
}
sig = subsig;
}
return sig;
}
/*
* Identifiers in continuous assignment l-values are limited to wires
* and that ilk. Detect registers and memories here and report errors.
*/
NetNet* PEIdent::elaborate_lnet(Design*des, NetScope*scope) const
{
return elaborate_lnet_common_(des, scope, false);
}
NetNet* PEIdent::elaborate_bi_net(Design*des, NetScope*scope) const
{
return elaborate_lnet_common_(des, scope, true);
}
/*
* This method is used to elaborate identifiers that are ports to a
* scope. The scope is presumed to be that of the module that has the
* port. This elaboration is done inside the module, and is only done
* to PEIdent objects. This method is used by elaboration of a module
* instantiation (PGModule::elaborate_mod_) to get NetNet objects for
* the port.
*/
NetNet* PEIdent::elaborate_subport(Design*des, NetScope*scope) const
{
ivl_assert(*this, scope->type() == NetScope::MODULE);
NetNet*sig = des->find_signal(scope, path_.name);
if (sig == 0) {
cerr << get_fileline() << ": error: no wire/reg " << path_
<< " in module " << scope_path(scope) << "." << endl;
des->errors += 1;
return 0;
}
/* Check the port_type of the signal to make sure it is really