-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtango.py
205 lines (185 loc) · 6.65 KB
/
tango.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
#---------------------------------------------------------------
# TANGO
# Animate exoplanet transits!
# October 2018, Oscar Barragan
# Updated March 2021, Oscar Barragan
#---------------------------------------------------------------
#Load libraries
from __future__ import print_function, division, absolute_import
import sys
import os
from matplotlib import gridspec
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
sns.set(style='ticks')
sns.set_color_codes()
#Start TANGO as ./tango.py system
system = str(sys.argv[1])
exec(open('src/default.py').read())
exec(open(system+'/input.py').read())
#number of planets
npl = len(P)
#Read the data file
tvec, fvec, evec = np.loadtxt(system+'/'+lcname,unpack=True,usecols=(0,1,2))
error_mean = np.mean(evec)
sigma3 = 3*error_mean
fvec = fvec*100.
evec = evec*100.
#Estimate number of iterations
niter = int((tmax - tmin)/vel_time)
#Create the flux vector
Tp = [None]*npl
for o in range(npl):
#Calculate time of periastron
Tp[o] = find_tp(T0[o],e[o],w[o],P[o])
if is_plot_model:
from pytransit import QuadraticModel
#Let us use PyTransit to compute the transits
xtr_model = np.arange(min(tvec)-size_time,max(tvec)+size_time,0.0001)
fluxtr_model = [1]*len(xtr_model)
for o in range(npl):
tm = QuadraticModel(interpolate=False)
tm.set_data(xtr_model,exptimes=t_cad,nsamples=n_cad)
fluxtr_planet = tm.evaluate(k=rp[o], ldc=[u1,u2], t0=T0[o], p=P[o], a=a[o], i=inclination[o])
#Avoid errors because of occultations calculated by pytransit
phase = abs(((xtr_model-T0[o])%P[o])/P[o])
phase[phase>0.5] -= 1
fluxtr_planet[abs(phase)>0.125] = 1.
fluxtr_model *= fluxtr_planet
#Change the model to percentage
fluxtr_model *= 100
#Let us create the coordinates for the plot
nu = [None]*npl
R = [None]*npl
X = [None]*npl
Y = [None]*npl
min_t = tmin + size_time/2.0
ptime = np.arange(min_t,tmax+size_time,vel_time)
for o in range(0,npl):
nu[o] = find_anomaly(ptime,Tp[o],e[o],P[o])
#We have the true anomaly, time to calculate R
R[o] = a[o]*(1-e[o]**2)/(1. + e[o]*np.cos(nu[o]) )
X[o] = - R[o] * ( np.cos(nu[o] + w[o]) )
Y[o] = - R[o] * ( np.sin(nu[o] + w[o]) * np.cos(inclination[o]) )
#Let us find the stellar colour
teff = np.loadtxt('src/colours.dat',unpack=True,comments='!',usecols=0)
col = np.loadtxt('src/colours.dat',unpack=True,comments='!',usecols=1,dtype=str)
#Let us compute the closses teff to our T_star
difs = abs(teff-T_star)
#Let us select the index that matches better our T_star
cstar = col[np.argmin(difs)]
if cdata == None: cdata = cstar
continuar = True
min_loc = tmin
max_loc = tmin + size_time
n = 1
print('Creating png files')
while continuar:
estet = []
estef = []
estee = []
modt = []
modf = []
for o in range(len(tvec)):
if ( tvec[o] > min_loc and tvec[o] < max_loc ):
estet.append(tvec[o])
estef.append(fvec[o])
estee.append(evec[o])
#model
if is_plot_model:
for o in range(len(xtr_model)):
if ( xtr_model[o] > min_loc and xtr_model[o] < max_loc - size_time/2. ):
modt.append(xtr_model[o])
modf.append(fluxtr_model[o])
#At this point we have all the data inside the window
#time to plot
#---------------------------------------------------------------
# DATA
#---------------------------------------------------------------
if dark_mode: plt.style.use('dark_background')
fsize = 6
df = 0.13*(100.-min(fvec))
fig = plt.figure(1,figsize=(fsize,fsize))
#plt.xkcd()
gs = gridspec.GridSpec(nrows=2, ncols=1,height_ratios=[1.4, 1.])
ax0 = plt.subplot(gs[0])
plt.ylim(min(fvec)-df,max(fvec)+df)
plt.xlim(min_loc,min_loc+size_time)
plt.axvline(x=min_loc+size_time/2.,c='r',ls='--')
plt.ticklabel_format(useOffset=False, axis='y')
plt.ticklabel_format(useOffset=False, axis='x')
if is_plot_errorbars :
plt.errorbar(estet,estef,estee,fmt='o',color=cdata)
else:
plt.plot(estet,estef,'o',color=cdata,alpha=0.5)
if is_plot_model: plt.plot(modt,modf,'k',color=cmodel,zorder=5)
plt.minorticks_on()
plt.tick_params( axis='x',which='both',direction='in')
plt.tick_params( axis='y',which='both',direction='in')
plt.tick_params(labelsize=fsize)
plt.xlabel(xlabel,fontsize=fsize)
plt.ylabel(ylabel,fontsize=fsize)
xticks = ax0.get_xticks()
xticks = list(xticks)
for j in range(0,len(xticks)):
xticks[j] = round(xticks[j],3)
#ax0.set_xticklabels(xticks)
ax0.set_xticklabels(xticks[0:len(xticks)-2])
#---------------------------------------------------------------
# Star-planets
#---------------------------------------------------------------
ax1 = plt.subplot(gs[1])
star = plt.Circle((0,0),1.0,color=cstar)
ax1.add_artist(star)
planet = [None]*npl
for j in range(0,npl):
#if ( Y[j][n-1] < 0 or np.sqrt(X[j][n-1]**2 + Y[j][n-1]**2) > 1 ):
if ( Y[j][n-1] < 0 or np.sqrt(X[j][n-1]**2 + Y[j][n-1]**2) > 1 ):
pcolor = 'k'
if dark_mode: pcolor = '#ffffff'
planet[j] = plt.Circle((X[j][n-1],Y[j][n-1]),rp[j],color=pcolor)
ax1.add_artist(planet[j])
plt.xlim(-4,4)
if xaxis_log:
plt.xlim(-xlimit,xlimit)
plt.xscale('symlog')
plt.minorticks_on()
plt.ylim(-1.5,1.5)
plt.tick_params( axis='x',which='both',direction='in')
plt.tick_params( axis='y',which='both',direction='in')
plt.xlabel(skylabel,fontsize=fsize)
plt.ylabel(skylabel,fontsize=fsize)
plt.tick_params(labelsize=fsize)
plt.annotate(system,xy=(0.12,0.37),xycoords='figure fraction',alpha=0.5,fontsize=10)
#
file_name = system + '/' + system + '-'
m = n
if (n == 0):
m = 1
for j in range(0,int(np.log10(niter))-int(np.log10(m))):
file_name = file_name + '0'
file_name = file_name+str(n)+'.png'
fig.set_size_inches(fsize,fsize)
#plt.savefig(file_name,dpi=300,bbox_inches='tight')
#plt.style.use('dark_background')
#plt.savefig(file_name,bbox_inches='tight',transparent=True)
plt.savefig(file_name,bbox_inches='tight')
plt.close()
#Now let us evolve the video
min_loc = min_loc + vel_time
max_loc = max_loc + vel_time
if ( max_loc > tmax ):
continuar = False
else:
n = n + 1
print('png files have been created')
#---------------------------------------------------------------
# END plot creation
#---------------------------------------------------------------
# Start movie creation
#---------------------------------------------------------------
exec(open('src/moviepy_src.py').read())
#---------------------------------------------------------------
# End movie creation
#---------------------------------------------------------------