Find the first index i
where lo <= i <= hi
that satisfies function
.
def findMedianSortedArrays(nums1, nums2):
def median(a, b, extrema):
k = -1 * (extrema == max)
half = []
if a:
half += [nums2[j + k]]
if b:
half += [nums1[i + k]]
return extrema(half)
nums1, nums2 = sorted([nums1, nums2], key=len)
m, n = len(nums1), len(nums2)
sum_len = m + n
mean_len = (sum_len + 1)//2
i = binary(0, m,
lambda x: x and nums1[x - 1] > nums2[mean_len - x]
)
j = sum_len - i
return median_low if sum_len%2 else (median_low
+ median(i == m, j == n, min)
)/2
Search in Rotated Sorted Array
def search(nums, target):
if nums:
n = len(nums)
m = n - 1
i = binary(0, m, lambda x: nums[x - 1] > nums[x])
j = binary(i, i + m, lambda y: nums[y%n] == target)%n
return j if nums[j] == target else -1
return -1
Find First and Last Position of Element in Sorted Array
def searchRange(nums, target):
if nums:
n = len(nums) - 1
i = binary(0, n - 1, lambda x: nums[x] >= target)
if nums[i] == target:
j = binary(i, n, lambda y: nums[y] > target) - 1
return [i, j]
else:
return [-1, -1]
return [-1, -1]
def searchMatrix(matrix, target):
m = len(matrix[0])
i = binary(0, len(matrix)*m - 1,
lambda x: matrix[x//m][x%m] >= target
)
return matrix[i//m][i%m] == target
Search in Rotated Sorted Array II
def search(nums, target):
if nums:
n = len(nums)
m = n - 1
lo, hi = 0, m
while lo < n and nums[lo] == nums[0]:
lo += 1
while hi and nums[hi] == nums[-1]:
hi -= 1
i = binary(lo, hi, lambda x: nums[x - 1] > nums[x])
return nums[binary(i, i + m,
lambda y: nums[y%n] >= target
)%n] == target
return False
Find Minimum in Rotated Sorted Array
def findMin(nums):
return nums[binary(0, len(nums) - 1,
lambda x: nums[x - 1] > nums[x]
)]
def findPeakElement(nums):
n = len(nums)
if n > 2:
i = binary(1, n - 2,
lambda x: nums[x - 1] < nums[x] > nums[x + 1]
)
return nums[i]
else:
return max(nums)
def hIndex(citations):
n = len(citations)
return binary(0, n - 1, lambda x: citations[x] >= n - x)
Longest Increasing Subsequence
def lengthOfLIS(nums):
tails, size = [0]*len(nums), 0
for num in nums:
i = binary(0, size, lambda x: tails[x] >= num)
tails[i], size = num, max(i + 1, size)
return size
def isPerfectSquare(num):
return binary(1, num, lambda x: x**2 >= num)**2 == num
def splitArray(nums, m):
def is_valid(target):
subarray_sum = counter = 0
for num in nums:
subarray_sum += num
if subarray_sum > target:
subarray_sum = num
counter += 1
if counter >= m: return False
return True
array_sum = sum(nums)
return binary(max(nums), is_valid(array_sum)
) if m > 1 else array_sum
def minEatingSpeed(piles, H):
def can_eat(K):
hours = 0
for pile in piles:
hours += pile//K
if pile%K:
hours += 1
return hours <= H
return binary(1, max(piles), can_eat)
Find Positive Integer Solution for a Given Equation
def findSolution(customfunction, z):
lo, hi = 1, 1001
pairs = []
for x in range(1, 1001):
if not customfunction.f(x, lo) < customfunction.f(x, hi) < z:
y = binary(lo, hi, lambda b: customfunction.f(x, b) >= z)
value = customfunction.f(x, y)
if value >= z:
if value == z: pairs += [[x, y]]
hi = y
else:
lo = y
return pairs
Find the Smallest Divisor Given a Threshold
def smallestDivisor(nums, threshold):
return binary(1, max(nums),
lambda x: sum((i + x - 1)//x for i in nums) <= threshold
)
Apply the Rabin-Karp algorithm to an input string given a pattern. Return an array of match indices.
def strStr(haystack, needle):
m = search.rabin_karp(needle, haystack)
return m[0] if m else -1