You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Why are we using constant variance for the generating network of autoencoder instead of learning it like mean from the network itself. What advantage does it have over the learnable variance? This is done in the models.py file at line numbers 473 and 681.
Why are we using constant variance for the generating network of autoencoder instead of learning it like mean from the network itself. What advantage does it have over the learnable variance? This is done in the models.py file at line numbers 473 and 681.
mean_x = T.clip(output+.5, 0+1/512., 1-1/512.)
logsd_x = 0*mean_x + w['logsd_x']
The text was updated successfully, but these errors were encountered: