-
Notifications
You must be signed in to change notification settings - Fork 1.1k
/
Copy pathresnet50_8xb256-coslr-300e_in1k.py
107 lines (100 loc) · 2.84 KB
/
resnet50_8xb256-coslr-300e_in1k.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
_base_ = [
'../../_base_/models/resnet50.py',
'../../_base_/datasets/imagenet_bs256_rsb_a12.py',
'../../_base_/default_runtime.py'
]
# modification is based on ResNets RSB settings
data_preprocessor = dict(
num_classes=1000,
# RGB format normalization parameters
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
# convert image from BGR to RGB
to_rgb=True,
)
bgr_mean = data_preprocessor['mean'][::-1]
bgr_std = data_preprocessor['std'][::-1]
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='RandomResizedCrop',
scale=224,
backend='pillow',
interpolation='bicubic'),
dict(type='RandomFlip', prob=0.5, direction='horizontal'),
dict(type='NumpyToPIL', to_rgb=True),
dict(
type='torchvision/TrivialAugmentWide',
num_magnitude_bins=31,
interpolation='bicubic',
fill=None),
dict(type='PILToNumpy', to_bgr=True),
dict(
type='RandomErasing',
erase_prob=0.25,
mode='rand',
min_area_ratio=0.02,
max_area_ratio=1 / 3,
fill_color=bgr_mean,
fill_std=bgr_std),
dict(type='PackInputs'),
]
train_dataloader = dict(dataset=dict(pipeline=train_pipeline))
# model settings
model = dict(
backbone=dict(
norm_cfg=dict(type='SyncBN', requires_grad=True),
drop_path_rate=0.05,
init_cfg=dict(type='Pretrained', checkpoint='', prefix='backbone.')),
head=dict(
loss=dict(
type='LabelSmoothLoss', label_smooth_val=0.1, use_sigmoid=True)),
train_cfg=dict(augments=[
dict(type='Mixup', alpha=0.1),
dict(type='CutMix', alpha=1.0)
]))
# schedule settings
# optimizer
optim_wrapper = dict(
optimizer=dict(
type='Lamb',
lr=0.016,
weight_decay=0.02,
),
constructor='LearningRateDecayOptimWrapperConstructor',
paramwise_cfg=dict(
layer_decay_rate=0.7,
norm_decay_mult=0.0,
bias_decay_mult=0.0,
flat_decay_mult=0.0))
# learning policy
param_scheduler = [
# warm up learning rate scheduler
dict(
type='LinearLR',
start_factor=0.0001,
by_epoch=True,
begin=0,
end=5,
# update by iter
convert_to_iter_based=True),
# main learning rate scheduler
dict(
type='CosineAnnealingLR',
T_max=295,
eta_min=1.0e-6,
by_epoch=True,
begin=5,
end=300)
]
train_cfg = dict(by_epoch=True, max_epochs=300)
val_cfg = dict()
test_cfg = dict()
default_hooks = dict(
# only keeps the latest 2 checkpoints
checkpoint=dict(type='CheckpointHook', interval=1, max_keep_ckpts=2))
# randomness
randomness = dict(seed=0, diff_rank_seed=True)
# NOTE: `auto_scale_lr` is for automatically scaling LR,
# based on the actual training batch size.
auto_scale_lr = dict(base_batch_size=2048)