-
Notifications
You must be signed in to change notification settings - Fork 1.1k
/
Copy patheva-mae-style_vit-base-p16_16xb256-coslr-400e_in1k.py
86 lines (78 loc) · 2.32 KB
/
eva-mae-style_vit-base-p16_16xb256-coslr-400e_in1k.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
_base_ = [
'../_base_/models/mae_vit-base-p16.py',
'../_base_/datasets/imagenet_bs512_mae.py',
'../_base_/default_runtime.py',
]
# dataset settings
train_dataloader = dict(batch_size=256)
# model settings
model = dict(
type='EVA',
backbone=dict(init_cfg=[
dict(type='Xavier', distribution='uniform', layer='Linear'),
dict(type='Constant', layer='LayerNorm', val=1.0, bias=0.0)
]),
neck=dict(
type='MAEPretrainDecoder',
predict_feature_dim=512,
init_cfg=[
dict(type='Xavier', distribution='uniform', layer='Linear'),
dict(type='Constant', layer='LayerNorm', val=1.0, bias=0.0)
]),
head=dict(
_delete_=True,
type='MIMHead',
loss=dict(
type='CosineSimilarityLoss', shift_factor=2.0, scale_factor=2.0),
),
target_generator=dict(
type='CLIPGenerator',
tokenizer_path= # noqa
'https://download.openmmlab.com/mmselfsup/1.x/target_generator_ckpt/clip_vit_base_16.pth.tar' # noqa
),
init_cfg=None)
# optimizer wrapper
optim_wrapper = dict(
type='OptimWrapper',
optimizer=dict(
type='AdamW',
lr=1.5e-4 * 4096 / 256,
betas=(0.9, 0.95),
weight_decay=0.05),
paramwise_cfg=dict(
custom_keys={
'ln': dict(decay_mult=0.0),
'bias': dict(decay_mult=0.0),
'pos_embed': dict(decay_mult=0.),
'mask_token': dict(decay_mult=0.),
'cls_token': dict(decay_mult=0.)
}))
find_unused_parameters = True
# learning rate scheduler
param_scheduler = [
dict(
type='LinearLR',
start_factor=1e-4,
by_epoch=True,
begin=0,
end=40,
convert_to_iter_based=True),
dict(
type='CosineAnnealingLR',
T_max=360,
by_epoch=True,
begin=40,
end=400,
convert_to_iter_based=True)
]
# runtime settings
train_cfg = dict(type='EpochBasedTrainLoop', max_epochs=400)
default_hooks = dict(
# only keeps the latest 3 checkpoints
checkpoint=dict(type='CheckpointHook', interval=1, max_keep_ckpts=3))
randomness = dict(seed=0, diff_rank_seed=True)
# auto resume
resume = True
# NOTE: `auto_scale_lr` is for automatically scaling LR
# based on the actual training batch size.
auto_scale_lr = dict(base_batch_size=4096)