-
Notifications
You must be signed in to change notification settings - Fork 1.1k
/
Copy pathmetafile.yml
44 lines (43 loc) · 1.56 KB
/
metafile.yml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
Collections:
- Name: DenseCL
Metadata:
Training Data: ImageNet-1k
Training Techniques:
- SGD with Momentum
- Weight Decay
Training Resources: 8x V100 GPUs
Architecture:
- ResNet
Paper:
Title: Dense contrastive learning for self-supervised visual pre-training
URL: https://arxiv.org/abs/2011.09157
README: configs/densecl/README.md
Models:
- Name: densecl_resnet50_8xb32-coslr-200e_in1k
Metadata:
Epochs: 200
Batch Size: 256
FLOPs: 4109364224
Parameters: 64850560
Training Data: ImageNet-1k
In Collection: DenseCL
Results: null
Weights: https://download.openmmlab.com/mmselfsup/1.x/densecl/densecl_resnet50_8xb32-coslr-200e_in1k/densecl_resnet50_8xb32-coslr-200e_in1k_20220825-3078723b.pth
Config: configs/densecl/densecl_resnet50_8xb32-coslr-200e_in1k.py
Downstream:
- resnet50_densecl-pre_8xb32-linear-steplr-100e_in1k
- Name: resnet50_densecl-pre_8xb32-linear-steplr-100e_in1k
Metadata:
Epochs: 100
Batch Size: 256
FLOPs: 4109464576
Parameters: 25557032
Training Data: ImageNet-1k
In Collection: DenseCL
Results:
- Task: Image Classification
Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 63.5
Weights: https://download.openmmlab.com/mmselfsup/1.x/densecl/densecl_resnet50_8xb32-coslr-200e_in1k/resnet50_linear-8xb32-steplr-100e_in1k/resnet50_linear-8xb32-steplr-100e_in1k_20220825-f0f0a579.pth
Config: configs/densecl/benchmarks/resnet50_8xb32-linear-steplr-100e_in1k.py