-
Notifications
You must be signed in to change notification settings - Fork 1.1k
/
Copy pathblip2_8xb32_retrieval.py
82 lines (75 loc) · 2.1 KB
/
blip2_8xb32_retrieval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
_base_ = [
'../_base_/datasets/coco_retrieval.py',
'../_base_/default_runtime.py',
]
# model settings
model = dict(
type='Blip2Retrieval',
tokenizer=dict(type='Blip2Tokenizer', name_or_path='bert-base-uncased'),
vision_backbone=dict(
type='BEiTViT',
# eva-g without the final layer
arch=dict(
embed_dims=1408,
num_layers=39,
num_heads=16,
feedforward_channels=6144,
),
img_size=364,
patch_size=14,
layer_scale_init_value=0.0,
use_abs_pos_emb=True,
use_rel_pos_bias=False,
final_norm=False,
use_shared_rel_pos_bias=False,
out_type='raw'),
multimodal_backbone=dict(
type='Qformer',
model_style='bert-base-uncased',
vision_model_width=1408,
add_cross_attention=True,
cross_attention_freq=2,
num_query_token=32),
vision_neck=dict(
type='LinearClsHead',
in_channels=768,
num_classes=256,
),
text_neck=dict(
type='LinearClsHead',
in_channels=768,
num_classes=256,
),
multimodal_head=dict(
type='ITMHead',
hidden_size=768,
with_pooler=False,
),
topk=128,
max_txt_len=35,
)
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='Resize',
scale=(364, 364),
interpolation='bicubic',
backend='pillow'),
dict(type='CleanCaption', keys='text'),
dict(
type='PackInputs',
algorithm_keys=['text', 'gt_text_id', 'gt_image_id'],
meta_keys=['image_id']),
]
val_dataloader = dict(dataset=dict(pipeline=test_pipeline))
test_dataloader = val_dataloader
# optimizer
optimizer = dict(type='AdamW', lr=2e-5, weight_decay=0.04)
optim_wrapper = dict(type='OptimWrapper', optimizer=optimizer)
# learning rate scheduler
param_scheduler = [dict(type='CosineAnnealingLR', by_epoch=True)]
# runtime settings
train_cfg = dict(type='EpochBasedTrainLoop', max_epochs=6)
val_cfg = dict(type='RetrievalValLoop')
test_cfg = dict(type='RetrievalTestLoop')
randomness = dict(seed=42)