-
Notifications
You must be signed in to change notification settings - Fork 9.5k
/
Copy pathgroundingdino_to_mmdet.py
213 lines (183 loc) · 8.56 KB
/
groundingdino_to_mmdet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
# Copyright (c) OpenMMLab. All rights reserved.
import argparse
import subprocess
from collections import OrderedDict
import torch
from mmengine.runner import CheckpointLoader
def correct_unfold_reduction_order(x):
out_channel, in_channel = x.shape
x = x.reshape(out_channel, 4, in_channel // 4)
x = x[:, [0, 2, 1, 3], :].transpose(1, 2).reshape(out_channel, in_channel)
return x
def correct_unfold_norm_order(x):
in_channel = x.shape[0]
x = x.reshape(4, in_channel // 4)
x = x[[0, 2, 1, 3], :].transpose(0, 1).reshape(in_channel)
return x
def convert(ckpt):
new_ckpt = OrderedDict()
for k, v in list(ckpt.items()):
new_v = v
#
if 'module' not in k:
# NOTE: swin-b has no module prefix and swin-t has module prefix
k = 'module.' + k
if 'module.bbox_embed' in k:
# NOTE: bbox_embed name is swin-b is different from swin-t
k = k.replace('module.bbox_embed',
'module.transformer.decoder.bbox_embed')
if 'module.backbone.0' in k:
new_k = k.replace('module.backbone.0', 'backbone')
if 'patch_embed.proj' in new_k:
new_k = new_k.replace('patch_embed.proj',
'patch_embed.projection')
elif 'pos_drop' in new_k:
new_k = new_k.replace('pos_drop', 'drop_after_pos')
if 'layers' in new_k:
new_k = new_k.replace('layers', 'stages')
if 'mlp.fc1' in new_k:
new_k = new_k.replace('mlp.fc1', 'ffn.layers.0.0')
elif 'mlp.fc2' in new_k:
new_k = new_k.replace('mlp.fc2', 'ffn.layers.1')
elif 'attn' in new_k:
new_k = new_k.replace('attn', 'attn.w_msa')
if 'downsample' in k:
if 'reduction.' in k:
new_v = correct_unfold_reduction_order(v)
elif 'norm.' in k:
new_v = correct_unfold_norm_order(v)
elif 'module.bert' in k:
new_k = k.replace('module.bert',
'language_model.language_backbone.body.model')
# new_k = k.replace('module.bert', 'bert')
elif 'module.feat_map' in k:
new_k = k.replace('module.feat_map', 'text_feat_map')
elif 'module.input_proj' in k:
new_k = k.replace('module.input_proj', 'neck.convs')
if 'neck.convs.3' in new_k:
# extra convs for 4th scale
new_k = new_k.replace('neck.convs.3', 'neck.extra_convs.0')
if '0.weight' in new_k:
# 0.weight -> conv.weight
new_k = new_k.replace('0.weight', 'conv.weight')
if '0.bias' in new_k:
# 0.bias -> conv.bias
new_k = new_k.replace('0.bias', 'conv.bias')
if '1.weight' in new_k:
# 1.weight -> gn.weight
new_k = new_k.replace('1.weight', 'gn.weight')
if '1.bias' in new_k:
# 1.bias -> gn.bias
new_k = new_k.replace('1.bias', 'gn.bias')
elif 'module.transformer.level_embed' in k:
# module.transformer.level_embed -> level_embed
new_k = k.replace('module.transformer.level_embed', 'level_embed')
elif 'module.transformer.encoder' in k:
# if '.layers' in k:
new_k = k.replace('module.transformer.encoder', 'encoder')
if 'norm1' in new_k:
new_k = new_k.replace('norm1', 'norms.0')
if 'norm2' in new_k:
new_k = new_k.replace('norm2', 'norms.1')
if 'norm3' in new_k:
new_k = new_k.replace('norm3', 'norms.2')
if 'linear1' in new_k:
new_k = new_k.replace('linear1', 'ffn.layers.0.0')
if 'linear2' in new_k:
new_k = new_k.replace('linear2', 'ffn.layers.1')
if 'text_layers' in new_k and 'self_attn' in new_k:
new_k = new_k.replace('self_attn', 'self_attn.attn')
elif 'module.transformer.enc_output' in k:
if 'module.transformer.enc_output' in k and 'norm' not in k:
new_k = k.replace('module.transformer.enc_output',
'memory_trans_fc')
if 'module.transformer.enc_output_norm' in k:
new_k = k.replace('module.transformer.enc_output_norm',
'memory_trans_norm')
elif 'module.transformer.enc_out_bbox_embed.layers' in k:
# ugly version
if 'module.transformer.enc_out_bbox_embed.layers.0' in k:
new_k = k.replace(
'module.transformer.enc_out_bbox_embed.layers.0',
'bbox_head.reg_branches.6.0')
if 'module.transformer.enc_out_bbox_embed.layers.1' in k:
new_k = k.replace(
'module.transformer.enc_out_bbox_embed.layers.1',
'bbox_head.reg_branches.6.2')
if 'module.transformer.enc_out_bbox_embed.layers.2' in k:
new_k = k.replace(
'module.transformer.enc_out_bbox_embed.layers.2',
'bbox_head.reg_branches.6.4')
elif 'module.transformer.tgt_embed' in k:
new_k = k.replace('module.transformer.tgt_embed',
'query_embedding')
elif 'module.transformer.decoder' in k:
new_k = k.replace('module.transformer.decoder', 'decoder')
if 'norm1' in new_k:
# norm1 in official GroundingDINO is the third norm in decoder
new_k = new_k.replace('norm1', 'norms.2')
if 'catext_norm' in new_k:
# catext_norm in official GroundingDINO is the
# second norm in decoder
new_k = new_k.replace('catext_norm', 'norms.1')
if 'norm2' in new_k:
# norm2 in official GroundingDINO is the first norm in decoder
new_k = new_k.replace('norm2', 'norms.0')
if 'norm3' in new_k:
new_k = new_k.replace('norm3', 'norms.3')
if 'ca_text' in new_k:
new_k = new_k.replace('ca_text', 'cross_attn_text')
if 'in_proj_weight' in new_k:
new_k = new_k.replace('in_proj_weight',
'attn.in_proj_weight')
if 'in_proj_bias' in new_k:
new_k = new_k.replace('in_proj_bias', 'attn.in_proj_bias')
if 'out_proj.weight' in new_k:
new_k = new_k.replace('out_proj.weight',
'attn.out_proj.weight')
if 'out_proj.bias' in new_k:
new_k = new_k.replace('out_proj.bias',
'attn.out_proj.bias')
if 'linear1' in new_k:
new_k = new_k.replace('linear1', 'ffn.layers.0.0')
if 'linear2' in new_k:
new_k = new_k.replace('linear2', 'ffn.layers.1')
if 'self_attn' in new_k:
new_k = new_k.replace('self_attn', 'self_attn.attn')
if 'bbox_embed' in new_k:
reg_layer_id = int(new_k.split('.')[2])
linear_id = int(new_k.split('.')[4])
weight_or_bias = new_k.split('.')[-1]
new_k = 'bbox_head.reg_branches.' + \
str(reg_layer_id)+'.'+str(2*linear_id)+'.'+weight_or_bias
else:
print('skip:', k)
continue
new_ckpt[new_k] = new_v
return new_ckpt
def main():
parser = argparse.ArgumentParser(
description='Convert keys to mmdet style.')
parser.add_argument(
'src',
default='groundingdino_swint_ogc.pth.pth',
help='src model path or url')
# The dst path must be a full path of the new checkpoint.
parser.add_argument(
'dst',
default='groundingdino_swint_ogc.pth_mmdet.pth',
help='save path')
args = parser.parse_args()
checkpoint = CheckpointLoader.load_checkpoint(args.src, map_location='cpu')
if 'model' in checkpoint:
state_dict = checkpoint['model']
else:
state_dict = checkpoint
weight = convert(state_dict)
torch.save(weight, args.dst)
sha = subprocess.check_output(['sha256sum', args.dst]).decode()
final_file = args.dst.replace('.pth', '') + '-{}.pth'.format(sha[:8])
subprocess.Popen(['mv', args.dst, final_file])
print(f'Done!!, save to {final_file}')
if __name__ == '__main__':
main()