-
Notifications
You must be signed in to change notification settings - Fork 9.5k
/
Copy pathddq-detr-4scale_r50_8xb2-12e_coco.py
170 lines (163 loc) · 5.74 KB
/
ddq-detr-4scale_r50_8xb2-12e_coco.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
_base_ = [
'../_base_/datasets/coco_detection.py', '../_base_/default_runtime.py'
]
model = dict(
type='DDQDETR',
num_queries=900, # num_matching_queries
# ratio of num_dense queries to num_queries
dense_topk_ratio=1.5,
with_box_refine=True,
as_two_stage=True,
data_preprocessor=dict(
type='DetDataPreprocessor',
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
bgr_to_rgb=True,
pad_size_divisor=1),
backbone=dict(
type='ResNet',
depth=50,
num_stages=4,
out_indices=(1, 2, 3),
frozen_stages=1,
norm_cfg=dict(type='BN', requires_grad=False),
norm_eval=True,
style='pytorch',
init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50')),
neck=dict(
type='ChannelMapper',
in_channels=[512, 1024, 2048],
kernel_size=1,
out_channels=256,
act_cfg=None,
norm_cfg=dict(type='GN', num_groups=32),
num_outs=4),
# encoder class name: DeformableDetrTransformerEncoder
encoder=dict(
num_layers=6,
layer_cfg=dict(
self_attn_cfg=dict(embed_dims=256, num_levels=4,
dropout=0.0), # 0.1 for DeformDETR
ffn_cfg=dict(
embed_dims=256,
feedforward_channels=2048, # 1024 for DeformDETR
ffn_drop=0.0))), # 0.1 for DeformDETR
# decoder class name: DDQTransformerDecoder
decoder=dict(
# `num_layers` >= 2, because attention masks of the last
# `num_layers` - 1 layers are used for distinct query selection
num_layers=6,
return_intermediate=True,
layer_cfg=dict(
self_attn_cfg=dict(embed_dims=256, num_heads=8,
dropout=0.0), # 0.1 for DeformDETR
cross_attn_cfg=dict(embed_dims=256, num_levels=4,
dropout=0.0), # 0.1 for DeformDETR
ffn_cfg=dict(
embed_dims=256,
feedforward_channels=2048, # 1024 for DeformDETR
ffn_drop=0.0)), # 0.1 for DeformDETR
post_norm_cfg=None),
positional_encoding=dict(
num_feats=128,
normalize=True,
offset=0.0, # -0.5 for DeformDETR
temperature=20), # 10000 for DeformDETR
bbox_head=dict(
type='DDQDETRHead',
num_classes=80,
sync_cls_avg_factor=True,
loss_cls=dict(
type='FocalLoss',
use_sigmoid=True,
gamma=2.0,
alpha=0.25,
loss_weight=1.0),
loss_bbox=dict(type='L1Loss', loss_weight=5.0),
loss_iou=dict(type='GIoULoss', loss_weight=2.0)),
dn_cfg=dict(
label_noise_scale=0.5,
box_noise_scale=1.0,
group_cfg=dict(dynamic=True, num_groups=None, num_dn_queries=100)),
dqs_cfg=dict(type='nms', iou_threshold=0.8),
# training and testing settings
train_cfg=dict(
assigner=dict(
type='HungarianAssigner',
match_costs=[
dict(type='FocalLossCost', weight=2.0),
dict(type='BBoxL1Cost', weight=5.0, box_format='xywh'),
dict(type='IoUCost', iou_mode='giou', weight=2.0)
])),
test_cfg=dict(max_per_img=300))
train_pipeline = [
dict(type='LoadImageFromFile', backend_args=_base_.backend_args),
dict(type='LoadAnnotations', with_bbox=True),
dict(type='RandomFlip', prob=0.5),
dict(
type='RandomChoice',
transforms=[
[
dict(
type='RandomChoiceResize',
scales=[(480, 1333), (512, 1333), (544, 1333), (576, 1333),
(608, 1333), (640, 1333), (672, 1333), (704, 1333),
(736, 1333), (768, 1333), (800, 1333)],
keep_ratio=True)
],
[
dict(
type='RandomChoiceResize',
# The radio of all image in train dataset < 7
# follow the original implement
scales=[(400, 4200), (500, 4200), (600, 4200)],
keep_ratio=True),
dict(
type='RandomCrop',
crop_type='absolute_range',
crop_size=(384, 600),
allow_negative_crop=True),
dict(
type='RandomChoiceResize',
scales=[(480, 1333), (512, 1333), (544, 1333), (576, 1333),
(608, 1333), (640, 1333), (672, 1333), (704, 1333),
(736, 1333), (768, 1333), (800, 1333)],
keep_ratio=True)
]
]),
dict(type='PackDetInputs')
]
train_dataloader = dict(
dataset=dict(
filter_cfg=dict(filter_empty_gt=False), pipeline=train_pipeline))
# optimizer
optim_wrapper = dict(
type='OptimWrapper',
optimizer=dict(type='AdamW', lr=0.0002, weight_decay=0.05),
clip_grad=dict(max_norm=0.1, norm_type=2),
paramwise_cfg=dict(custom_keys={'backbone': dict(lr_mult=0.1)}))
# learning policy
max_epochs = 12
train_cfg = dict(
type='EpochBasedTrainLoop', max_epochs=max_epochs, val_interval=1)
val_cfg = dict(type='ValLoop')
test_cfg = dict(type='TestLoop')
param_scheduler = [
dict(
type='LinearLR',
start_factor=0.0001,
by_epoch=False,
begin=0,
end=2000),
dict(
type='MultiStepLR',
begin=0,
end=max_epochs,
by_epoch=True,
milestones=[11],
gamma=0.1)
]
# NOTE: `auto_scale_lr` is for automatically scaling LR,
# USER SHOULD NOT CHANGE ITS VALUES.
# base_batch_size = (8 GPUs) x (2 samples per GPU)
auto_scale_lr = dict(base_batch_size=16)