You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
I tried to create a realtime webcam skeleton inferencer. I mixed webcam_demo.py and demo_skeleton.py and fixed a little bit and made some changes in it. It doesnt work well but if you'd like to see or try something on it I share here.
What is the feature?
import argparse
import time
from collections import deque
from operator import itemgetter
from threading import Thread
import cv2
import numpy as np
import torch
from mmengine import Config, DictAction
from mmengine.dataset import Compose, pseudo_collate
from mmaction.apis import init_recognizer
from mmaction.utils import get_str_type
FONTFACE = cv2.FONT_HERSHEY_COMPLEX_SMALL
FONTSCALE = 1
FONTCOLOR = (255, 255, 255) # BGR, white
MSGCOLOR = (128, 128, 128) # BGR, gray
THICKNESS = 1
LINETYPE = 1
EXCLUED_STEPS = [
'OpenCVInit', 'OpenCVDecode', 'DecordInit', 'DecordDecode', 'PyAVInit',
'PyAVDecode', 'RawFrameDecode'
]
def parse_args():
parser = argparse.ArgumentParser(description='MMAction2 webcam demo')
parser.add_argument('config', help='test config file path')
parser.add_argument('checkpoint', help='checkpoint file/url')
parser.add_argument('label', help='label file')
parser.add_argument(
'--device', type=str, default='cuda:0', help='CPU/CUDA device option')
parser.add_argument(
'--camera-id', type=int, default=0, help='camera device id')
parser.add_argument(
'--threshold',
type=float,
default=0.01,
help='recognition score threshold')
parser.add_argument(
'--average-size',
type=int,
default=1,
help='number of latest clips to be averaged for prediction')
parser.add_argument(
'--drawing-fps',
type=int,
default=20,
help='Set upper bound FPS value of the output drawing')
parser.add_argument(
'--inference-fps',
type=int,
default=4,
help='Set upper bound FPS value of model inference')
parser.add_argument(
'--cfg-options',
nargs='+',
action=DictAction,
default={},
help='override some settings in the used config, the key-value pair '
'in xxx=yyy format will be merged into config file. For example, '
"'--cfg-options model.backbone.depth=18 model.backbone.with_cp=True'")
args = parser.parse_args()
assert args.drawing_fps >= 0 and args.inference_fps >= 0, \
'upper bound FPS value of drawing and inference should be set as ' \
'positive number, or zero for no limit'
return args
def show_results():
print('Press "Esc", "q" or "Q" to exit')
text_info = {}
cur_time = time.time()
while True:
msg = 'Waiting for action ...'
_, frame = camera.read()
frame = cv2.flip(frame, 1)
frame_queue.append(np.array(frame[:, :, ::-1]))
if len(result_queue) != 0:
text_info = {}
results = result_queue.popleft()
for i, result in enumerate(results):
selected_label, score = result
if score < threshold:
break
location = (0, 40 + i * 20)
text = selected_label + ': ' + str(round(score * 100, 2))
text_info[location] = text
cv2.putText(frame, text, location, FONTFACE, FONTSCALE,
FONTCOLOR, THICKNESS, LINETYPE)
elif len(text_info) != 0:
for location, text in text_info.items():
cv2.putText(frame, text, location, FONTFACE, FONTSCALE,
FONTCOLOR, THICKNESS, LINETYPE)
else:
cv2.putText(frame, msg, (0, 40), FONTFACE, FONTSCALE, MSGCOLOR,
THICKNESS, LINETYPE)
cv2.imshow('camera', frame)
ch = cv2.waitKey(1)
if ch == 27 or ch == ord('q') or ch == ord('Q'):
camera.release()
cv2.destroyAllWindows()
break
if drawing_fps > 0:
# add a limiter for actual drawing fps <= drawing_fps
sleep_time = 1 / drawing_fps - (time.time() - cur_time)
if sleep_time > 0:
time.sleep(sleep_time)
cur_time = time.time()
def inference():
score_cache = deque()
scores_sum = 0
cur_time = time.time()
while True:
cur_windows = []
while len(cur_windows) == 0:
if len(frame_queue) == sample_length:
cur_windows = list(np.array(frame_queue))
if data['img_shape'] is None:
data['img_shape'] = frame_queue.popleft().shape[:2]
cur_data = data.copy()
cur_data['imgs'] = cur_windows
cur_data = test_pipeline(cur_data)
cur_data = pseudo_collate([cur_data])
# Forward the model
with torch.no_grad():
result = model.test_step(cur_data)[0]
scores = result.pred_score.tolist()
scores = np.array(scores)
score_cache.append(scores)
scores_sum += scores
if len(score_cache) == average_size:
scores_avg = scores_sum / average_size
num_selected_labels = min(len(label), 5)
score_tuples = tuple(zip(label, scores_avg))
score_sorted = sorted(
score_tuples, key=itemgetter(1), reverse=True)
results = score_sorted[:num_selected_labels]
result_queue.append(results)
scores_sum -= score_cache.popleft()
if inference_fps > 0:
# add a limiter for actual inference fps <= inference_fps
sleep_time = 1 / inference_fps - (time.time() - cur_time)
if sleep_time > 0:
time.sleep(sleep_time)
cur_time = time.time()
def main():
global average_size, threshold, drawing_fps, inference_fps, \
device, model, camera, data, label, sample_length, \
test_pipeline, frame_queue, result_queue
args = parse_args()
average_size = args.average_size
threshold = args.threshold
drawing_fps = args.drawing_fps
inference_fps = args.inference_fps
device = torch.device(args.device)
cfg = Config.fromfile(args.config)
if args.cfg_options is not None:
cfg.merge_from_dict(args.cfg_options)
# Build the recognizer from a config file and checkpoint file/url
model = init_recognizer(cfg, args.checkpoint, device=args.device)
camera = cv2.VideoCapture(args.camera_id)
data = dict(img_shape=None, modality='RGB', label=-1)
with open(args.label, 'r') as f:
label = [line.strip() for line in f]
# prepare test pipeline from non-camera pipeline
cfg = model.cfg
sample_length = 0
pipeline = cfg.test_pipeline
pipeline_ = pipeline.copy()
for step in pipeline:
if 'SampleFrames' in get_str_type(step['type']):
sample_length = step['clip_len'] * step['num_clips']
data['num_clips'] = step['num_clips']
data['clip_len'] = step['clip_len']
pipeline_.remove(step)
if get_str_type(step['type']) in EXCLUED_STEPS:
# remove step to decode frames
pipeline_.remove(step)
test_pipeline = Compose(pipeline_)
assert sample_length > 0
try:
frame_queue = deque(maxlen=sample_length)
result_queue = deque(maxlen=1)
pw = Thread(target=show_results, args=(), daemon=True)
pr = Thread(target=inference, args=(), daemon=True)
pw.start()
pr.start()
pw.join()
except KeyboardInterrupt:
pass
if __name__ == '__main__':
main()
What alternatives have you considered?
No response
The text was updated successfully, but these errors were encountered:
What is the problem this feature will solve?
I tried to create a realtime webcam skeleton inferencer. I mixed webcam_demo.py and demo_skeleton.py and fixed a little bit and made some changes in it. It doesnt work well but if you'd like to see or try something on it I share here.
What is the feature?
What alternatives have you considered?
No response
The text was updated successfully, but these errors were encountered: