-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmidpoint.py
137 lines (104 loc) · 3.88 KB
/
midpoint.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
from math import sin, cos, sqrt, atan2, radians, pi
import pandas as pd
import numpy as np
import optunity
import argparse
def readData(filename):
points = pd.read_csv(filename, delimiter=",", header=0, usecols=[1,2]).as_matrix()
weights = pd.read_csv(filename, delimiter=",", header=0, usecols=[3]).as_matrix()
return points, weights
def distance(p1, p2):
R = 6373.0
lat1 = radians(p1[0])
lon1 = radians(p1[1])
lat2 = radians(p2[0])
lon2 = radians(p2[1])
dlon = lon2 - lon1
dlat = lat2 - lat1
a = (sin(dlat/2))**2 + cos(lat1) * cos(lat2) * (sin(dlon/2))**2
c = 2 * atan2(sqrt(a), sqrt(1-a))
distance = R * c
return distance
def convertoToCartesian(points):
cartesian_points = []
for p in points:
lat = radians(p[0])
lon = radians(p[1])
x = cos(lat) * cos(lon)
y = cos(lat) * sin(lon)
z = sin(lat)
cartesian_points.append([x, y, z])
return np.array(cartesian_points)
def convertToDegree(points):
degree_points = []
for p in points:
x = p[0]
y = p[1]
z = p[2]
lon = atan2(y, x)
hyp = sqrt(x*x + y*y)
lat = atan2(z, hyp)
lat *= 180 / pi
lon *= 180 / pi
degree_points.append([lat, lon])
return np.array(degree_points)
def weightedMean(points, weights):
X = 0.0
Y = 0.0
Z = 0.0
W = 0.0
for p, w in zip(points, weights):
x = p[0]
y = p[1]
z = p[2]
X += x * w
Y += y * w
Z += z * w
W += w
return [X/W, Y/W, Z/W]
def function_to_optimize(lat, lon):
d = 0
midpoint = (lat, lon)
for p, w in zip(points, weights):
d += w * distance(p, midpoint)
return d
def optimize(startin_point):
print "\nBegin optimization"
midpoint = startin_point
constraints = {'lat':[midpoint[0]-0.1 , midpoint[0]+0.1], 'lon': [midpoint[1]-0.1 , midpoint[1]+0.1]}
print "\tStarting from:\t\t", midpoint
print "\tCurrent distance:\t", function_to_optimize(midpoint[0], midpoint[1])[0]
for sname in optunity.available_solvers(): #['particle swarm']
#create a solver
suggestion = optunity.suggest_solver(num_evals=500, solver_name=sname, **constraints)
solver = optunity.make_solver(**suggestion)
#optimize the function
optimum = optunity.optimize(solver, function_to_optimize, maximize=False, max_evals=100)
print "\n\t==================================="
print "\tSolver name:\t", suggestion['solver_name']
print "\tMidpoint:\t", [optimum[0]['lat'], optimum[0]['lon']]
print "\tDistance:\t", optimum[1][0][0]
print "\tIterations:\t", optimum[1][1]['num_evals']
#print "\tTime (ms):\t", optimum[1][1]['time']
#print optimum
points = []
weights = []
def main(**args):
global points, weights
points, weights = readData(args['db'])
print "\nLoading {} points\n".format(len(points))
midpoint1 = points.mean(axis=0)
print "Midpoint (average latitude/longitude):\t", midpoint1
c_points = convertoToCartesian(points)
c_midpoint = c_points.mean(axis=0)
midpoint2 = convertToDegree([c_midpoint])[0]
print "Midpoint (center of gravity):\t\t", midpoint2
c_midpoint = weightedMean(c_points, weights)
midpoint3 = convertToDegree([c_midpoint])[0]
print "Weighted midpoint (center of gravity):\t", midpoint3
optimize(midpoint3)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='Compute midpoint of set of points', version='%(prog)s 1.0')
parser.add_argument('--db', type=str, default='data.csv', required=True, help='Path to the dataset in csv format [., latitude, longitude, weight, .*]')
args = parser.parse_args()
main(**vars(args))