-
Notifications
You must be signed in to change notification settings - Fork 7
/
utils.py
320 lines (253 loc) · 11.3 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
from __future__ import absolute_import, division
from skimage.transform import resize
from tensorflow.keras.models import model_from_json
import os
import numpy as np
from tensorflow.keras import backend as K
import importlib
import efficientnet.tfkeras
from sklearn.metrics import roc_auc_score, precision_recall_fscore_support, average_precision_score, hamming_loss, \
confusion_matrix, accuracy_score, classification_report
from generator import AugmentedImageSequence
import math
import pandas as pd
import cv2
from PIL import Image, ImageDraw
import json
from scipy import ndimage
def set_gpu_usage(gpu_memory_fraction):
pass
# if gpu_memory_fraction <= 1 and gpu_memory_fraction > 0:
# config = tf.ConfigProto(allow_soft_placement=True)
# config.gpu_options.per_process_gpu_memory_fraction = gpu_memory_fraction
# sess = tf.Session(config=config)
# elif gpu_memory_fraction == 0:
# sess = tf.Session(config=tf.ConfigProto(device_count={'GPU': 0}))
# K.set_session(sess)
def get_generator(csv_path, FLAGS, data_augmenter=None):
return AugmentedImageSequence(
dataset_csv_file=csv_path,
label_columns=FLAGS.csv_label_columns,
class_names=FLAGS.classes,
multi_label_classification=FLAGS.multi_label_classification,
source_image_dir=FLAGS.image_directory,
batch_size=FLAGS.batch_size,
target_size=FLAGS.image_target_size,
augmenter=data_augmenter,
shuffle_on_epoch_end=False,
)
def get_optimizer(optimizer_type, learning_rate, lr_decay=0):
optimizer_class = getattr(importlib.import_module("tensorflow.keras.optimizers"), optimizer_type)
optimizer = optimizer_class(lr=learning_rate, decay=lr_decay)
return optimizer
def save_model(model, save_path, model_name):
try:
os.makedirs(save_path)
except:
print("path already exists")
path = os.path.join(save_path, model_name)
# serialize model to JSON
model_json = model.to_json()
with open("{}.json".format(path), "w") as json_file:
json_file.write(model_json)
# serialize weights to HDF5
model.save_weights("{}.h5".format(path))
print("Saved model to disk")
def load_model(load_path, model_name):
path = os.path.join(load_path, model_name)
# load json and create model
json_file = open('{}.json'.format(path), 'r')
loaded_model_json = json_file.read()
json_file.close()
loaded_model = model_from_json(loaded_model_json)
# # load weights into new model
loaded_model.load_weights("{}.h5".format(path))
print("Loaded model from disk")
return loaded_model
################## Classification Evaluation ####################################
def classify_image(img, model, multi_label_classification, target_size=(224, 224, 3)):
# resize
img = img / 255.
img = resize(img, target_size)
batch_x = np.expand_dims(img, axis=0)
# normalize
imagenet_mean = np.array([0.485, 0.456, 0.406])
imagenet_std = np.array([0.229, 0.224, 0.225])
batch_x = (batch_x - imagenet_mean) / imagenet_std
# predict
predictions = model.predict(batch_x)
if multi_label_classification:
predictions[predictions >= 0.5] = 1
predictions[predictions < 0.5] = 0
else:
predictions = np.argmax(predictions, axis=1)
return predictions
# predict on data from generator and calculate accuracy
def get_accuracy_from_generator(model, generator, multi_label_classification, threshold):
true_predictions_count = 0.0
data_count = 0.0
# max=0
for step in range(generator.steps):
(batch_x, batch_y) = next(generator)
predictions = model.predict(batch_x)
if multi_label_classification:
predictions[predictions >= threshold] = 1
predictions[predictions < threshold] = 0
true_predictions_count += np.sum((predictions == batch_y).all(axis=1))
else:
predictions = np.argmax(predictions, axis=1)
true_predictions_count += np.sum(predictions == batch_y)
data_count += batch_x.shape[0]
accuracy = (true_predictions_count / data_count) * 100.0
return accuracy
def get_accuracy(predictions, labels, multi_label_classification):
if multi_label_classification:
predictions[predictions >= 0.5] = 1
predictions[predictions < 0.5] = 0
true_predictions_count = np.sum((predictions == labels).all(axis=1))
else:
predictions = np.argmax(predictions, axis=1)
true_predictions_count = np.sum(predictions == labels)
return (true_predictions_count / labels.shape[0]) * 100.0
def get_multilabel_evaluation_metrics(pred, labels, class_names, threshold=0.5, image_names=None, save_path=None):
current_auroc = []
for i in range(len(class_names)):
try:
score = roc_auc_score(labels[:, i], pred[:, i])
except ValueError:
score = 0
current_auroc.append(score)
print(f"{i + 1}. {class_names[i]}: {score}")
print("*********************************")
mean_auroc = np.mean(current_auroc)
print(f"mean auroc: {mean_auroc}")
AP = average_precision_score(labels, pred)
exact_accuracy, best_exact_thresh = get_best_exact_match(pred, labels)
prec, rec, fscore, support = precision_recall_fscore_support(labels, pred >= best_exact_thresh, average='macro')
if save_path is not None and image_names is not None:
save_exact_match_results(pred >= best_exact_thresh, labels, image_names, save_path)
ham_loss = hamming_loss(labels, pred >= best_exact_thresh)
print(
f"precision:{prec:.2f}, recall: {rec:.2f}, fscore: {fscore:.2f}, AP: {AP:.2f}, exact match accuracy: {exact_accuracy:.2f}, hamming loss: {ham_loss:.2f}")
return mean_auroc, prec, rec, fscore, AP, exact_accuracy, ham_loss
def get_str_label_rep(labels):
lst = []
for i in range(labels.shape[0]):
ones = np.where(labels[i, :] == 1)[0] + 1
ones = np.char.mod('%d', ones)
lst.append("$".join(ones))
return lst
def save_exact_match_results(pred, labels, image_names, path):
pred = get_str_label_rep(pred)
labels = get_str_label_rep(labels)
match = [True if p == l else False for p, l in zip(pred, labels)]
csv_dict = {"image_name": image_names, "label": labels, "prediction": pred, "match": match}
df = pd.DataFrame(csv_dict)
df.to_csv(path, index=False)
def get_best_exact_match(pred, labels, thresh_range=[0.01, 0.99], rate=0.01):
best_acc = 0
best_thresh = thresh_range[0]
thresh = thresh_range[0]
while (thresh <= thresh_range[1]):
exact_accuracy = accuracy_score(labels, pred >= thresh)
if exact_accuracy > best_acc:
best_acc = exact_accuracy
best_thresh = thresh
thresh += rate
print(f"best exact match acc found: {best_acc} with thresh {best_thresh}")
return best_acc, best_thresh
def get_sample_counts(labels):
total_count = labels.shape[0]
positive_counts = np.sum(labels, axis=0)
classes = []
for i in range(labels.shape[1]):
classes.append(str(i))
class_positive_counts = dict(zip(classes, positive_counts))
return total_count, class_positive_counts
# predict on data from generator and calculate accuracy
def get_evaluation_metrics(predictions, labels, class_names):
print(classification_report(labels, predictions, target_names=class_names))
print("*******Confusion matrix*********")
print(confusion_matrix(labels, predictions))
print("\nAccuracy: %.2f" % accuracy_score(labels, predictions))
def get_multilabel_class_weights(labels, multiply):
def get_single_class_weight(pos_counts, total_counts):
denominator = (total_counts - pos_counts) * multiply + pos_counts
return {
0: pos_counts / denominator,
1: (denominator - pos_counts) / denominator,
}
total_counts, class_positive_counts = get_sample_counts(labels)
class_names = list(class_positive_counts.keys())
label_counts = np.array(list(class_positive_counts.values()))
class_weights = []
for i, class_name in enumerate(class_names):
class_weights.append(get_single_class_weight(label_counts[i], total_counts))
return class_weights
def get_class_weights(labels_count, mu=0.15):
total = np.sum(labels_count)
class_weight = dict()
for key in range(len(labels_count)):
score = math.log(mu * total / float(labels_count[key]))
class_weight[key] = score if score > 1.0 else 1.0
return class_weight
################## Segmentation Evaluation ####################################
def alpha_blend(img, mask):
ALPHA = 0.5
mask *= (ALPHA * mask * 255).astype(np.uint8)
redImg = np.zeros(img.shape, np.uint8)
redImg[:, :] = (0, 0, 255)
redMask = cv2.bitwise_and(redImg.astype(np.uint8), redImg.astype(np.uint8), mask=mask.astype(np.uint8))
cv2.addWeighted(redMask, ALPHA, img, 1, 0, img)
blended = img.astype(np.uint16) + redMask # np.expand_dims(mask, axis=-1)
blended = blended.clip(0, 255)
return blended.astype(np.uint8)
def get_polygon_formatted(x_points, y_points):
points = []
for i in range(len(x_points)):
points.append((x_points[i], y_points[i]))
return points
def get_segmented_image(image, masks):
img_mask = Image.new('L', (image.shape[1], image.shape[0]), 0)
for mask in masks:
if mask == '{}':
continue
mask = json.loads(mask)
if mask['name'] == 'polygon':
poly = get_polygon_formatted(mask['all_points_x'], mask['all_points_y'])
ImageDraw.Draw(img_mask).polygon(poly, outline=1, fill=1)
elif mask['name'] == 'ellipse' or mask['name'] == 'circle' or mask['name'] == 'point':
if mask['name'] == 'circle':
mask['rx'] = mask['ry'] = mask['r']
elif mask['name'] == 'point':
mask['rx'] = mask['ry'] = 25
ellipse = [(mask['cx'] - mask['rx'], mask['cy'] - mask['ry']),
(mask['cx'] + mask['rx'], mask['cy'] + mask['ry'])]
ImageDraw.Draw(img_mask).ellipse(ellipse, outline=1, fill=1)
return img_mask
def remove_corner_highlights(heatmap, oneshot):
oneshot_85 = heatmap >= np.percentile(heatmap, 85)
labeled, nr_objects = ndimage.label(oneshot_85.astype(np.int))
if nr_objects > 1 and labeled[0, 0] > 0:
oneshot[labeled == labeled[0, 0]] = 0
return oneshot
def get_overlap_percentage(gt, seg):
return np.sum(np.logical_and(gt, seg)) / np.sum(np.logical_or(gt, seg))
def get_IOU(gt, seg):
return (get_overlap_percentage(gt, seg) + get_overlap_percentage(np.logical_not(gt).astype(int),
np.logical_not(seg).astype(int))) / 2
def calc_f1(gt, seg):
return 2 * np.sum(np.logical_and(gt, seg)) / np.sum(gt + seg)
def get_f1(gt, seg):
return (calc_f1(gt, seg) + calc_f1(np.logical_not(gt).astype(int), np.logical_not(seg).astype(int))) / 2
def is_covering_segmentation(gt, seg, percentage=0.5):
return int((np.sum(np.logical_and(gt, seg)) / np.sum(gt)) >= percentage)
def rgb2gray(rgb):
r, g, b = rgb[:, :, 0], rgb[:, :, 1], rgb[:, :, 2]
gray = 0.2989 * r + 0.5870 * g + 0.1140 * b
return gray
def apply_white_threshold(o, h, thresh):
o_gray = rgb2gray(o)
o_60 = o_gray < np.percentile(o_gray, thresh)
h[o_60] = 0
return h