-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_fmin_cg.py
executable file
·842 lines (736 loc) · 28 KB
/
test_fmin_cg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
#!/usr/bin/env python
"""
Test code for non-linear conjugate gradient.
"""
__authors__ = "Olivier Delalleau, Razvan Pascanu"
__copyright__ = "(c) 2011, Universite de Montreal"
__license__ = "BSD"
__contact__ = "Olivier Delalleau <delallea@iro>"
import cPickle, math, os, sys, time
from itertools import islice, izip
import matplotlib
import ubi_mm
ubi_mm.init_ml(__file__)
import ml
import ml.util
import dlt # Deep Learning Tutorials
from dlt.logistic_sgd import load_data
miniml = None # Lazy import
import numpy
import scipy
import theano
from theano import config, tensor
from ncg import leon_ncg_python
class ModelInterface(object):
"""
Provides an interface with convenience functions for optimization.
"""
def __init__(self, model, data_iter, n_offline_train, n_test, task):
self.model = model
self.data_iter = data_iter
params = self.model.params
n_params = sum(p.get_value(borrow=True).size for p in params)
self.params_vec = numpy.zeros(n_params, dtype=config.floatX)
self.compute_cost = theano.function(
[self.model.input, self.model.task_spec.target],
self.model.task_spec.total_cost)
self.compute_grad = theano.function(
[self.model.input, self.model.task_spec.target],
tensor.grad(self.model.task_spec.total_cost, params))
self.compute_output = self.model.task_spec.compute_output
# Build data matrices.
data = {}
data['test'] = list(islice(self.data_iter, n_test))
data['offline_train'] = list(islice(self.data_iter, n_offline_train))
first_input = data['offline_train'][0][0]
if first_input.shape:
assert len(first_input.shape) == 1
input_size = len(first_input)
else:
# Scalar value.
input_size = 1
first_target = data['offline_train'][0][1]
if first_target.shape:
assert len(first_target.shape) == 1
target_size = len(first_target)
else:
# Scalar value.
target_size = 1
print 'input_size = %s, target_size = %s' % (input_size, target_size)
n_data = {'offline_train': n_offline_train,
'test': n_test,
'online_train': n_offline_train,
}
self.data_input = {}
self.data_target = {}
for data_type in n_data:
self.data_input[data_type] = numpy.zeros(
(n_data[data_type], input_size), dtype=config.floatX)
if task == 'classification':
target_dtype = 'int64'
target_shape = (n_data[data_type],)
assert target_size == 1
else:
assert task == 'regression'
target_dtype = config.floatX
target_shape = (n_data[data_type], target_size)
self.data_target[data_type] = numpy.zeros(
target_shape, dtype=target_dtype)
for i, sample in enumerate(data.get(data_type, [])):
input, target = sample
self.data_input[data_type][i] = input
self.data_target[data_type][i] = target
# Copy offline train data as first chunk of online data.
for d in self.data_input, self.data_target:
d['online_train'][:] = d['offline_train']
# Store range of the current chunk of online data.
self.online_chunk = [0, n_data['online_train']]
def fill_params(self, param_values):
"""
Fill parameters with provided values.
"""
idx = 0
for p in self.model.params:
p_current = p.get_value(borrow=True)
p_vals = param_values[idx:idx + p_current.size]
p.set_value(p_vals.reshape(p_current.shape))
idx += p_current.size
def all_costs(self, param_values):
"""
Return all costs at given parameter values.
"""
self.fill_params(param_values)
return [self.model.task_spec.compute_costs(self.data_input[t],
self.data_target[t])
for t in ('offline_train', 'test')]
def cost(self, param_values):
"""
Return main cost at given parameter values.
"""
raise AssertionError('We are not currently using this function')
self.fill_params(param_values)
return self.compute_cost(self.data_input, self.data_target)
def grad(self, param_values):
"""
Return gradient at given parameter values.
"""
raise AssertionError('We are not currently using this function')
self.fill_params(param_values)
grads = self.compute_grad(self.data_input, self.data_target)
return self.flatten(grads)
def flatten(self, arrays):
"""
Return a vector containing all elements in all arrays.
The total number of elements is assumed to be the number of float
parameters to be optimized.
"""
rval = self.params_vec.copy()
# Fill vector with content of all arrays.
idx = 0
for array_val in arrays:
rval[idx:idx + array_val.size] = array_val.flatten()
idx += array_val.size
return rval
def get_minibatch(self, k0, k1):
"""
Return the pair (input, target) for minibatch [k0:k1].
If k1 is None then we use offline training data.
"""
print 'get_minibatch(%s, %s)' % (k0, k1)
input = self.data_input['online_train']
target = self.data_target['online_train']
if k1 is None:
# Easy case, get offline training data.
# Currently this should only happen when k0 == 0.
assert k0 == 0
#print '%s -> %s' % (input[k0][0], input[-1][0])
return input[k0:], target[k0:]
# Ensure our data chunk can store the full minibatch being requested.
assert k1 - k0 <= len(input)
# Ensure we are not trying to go back in time.
assert k0 >= self.online_chunk[0]
if k1 > self.online_chunk[1]:
# Need to retrieve more data from iterator.
# First copy the data already available.
start = k0 - self.online_chunk[0]
size = len(input) - start
for d in input, target:
d[0:size] = d[start:start + size].copy()
# Then retrieve more data.
#print 'Retrieving %s more samples' % start
for i, sample in enumerate(islice(self.data_iter, start)):
input[size + i] = sample[0]
target[size + i] = sample[1]
# And update online chunk info.
self.online_chunk[0] = k0
self.online_chunk[1] = k0 + len(input)
start = k0 - self.online_chunk[0]
end = k1 - self.online_chunk[0]
#print '%s -> %s' % (input[start][0], input[end - 1][0])
return input[start:end], target[start:end]
def make_cost(self, k0, k1):
"""
Return callable function to compute cost on minibatch [k0:k1].
"""
input, target = self.get_minibatch(k0, k1)
def f(param_values):
self.fill_params(param_values)
return self.compute_cost(input, target)
return f
def make_grad(self, k0, k1):
"""
Return callable function to compute gradient on minibatch [k0:k1].
"""
input, target = self.get_minibatch(k0, k1)
def g(param_values):
self.fill_params(param_values)
grads = self.compute_grad(input, target)
return self.flatten(grads)
return g
def params_to_vec(self):
return self.flatten([p.get_value(borrow=True)
for p in self.model.params])
def as_array(*args):
return [numpy.asarray(x, dtype=config.floatX) for x in args]
def get_data(spec):
"""
Return iteratable on data specified by `spec`.
"""
if '(' in spec:
start = spec.find('(')
end = spec.find(')')
assert start > 0 and end > 0
args = spec[start + 1:end]
else:
args = ''
start = len(spec)
return eval('get_data_%s(%s)' % (spec[0:start], args))
def get_data_f1():
"""
f1(x) = sin(pi * x) + normal(0, 0.1**2)
x ~ U[-3, 3]
"""
x_range = [-3, 3]
noise = dict(mu=0, sigma=0.1)
rng = get_rng()
while True:
x = rng.uniform(low=x_range[0], high=x_range[1])
y = math.sin(math.pi * x) + rng.normal(loc=noise['mu'],
scale=noise['sigma'])
yield as_array(x, y)
def get_data_f2():
"""
f2(x) = (x - 1)**2
x ~ U[-10, 10]
"""
x_range = [-10, 10]
rng = get_rng()
while True:
x = rng.uniform(low=x_range[0], high=x_range[1])
y = (x - 1)**2
yield as_array(x, y)
def get_data_f3(d):
"""
f3(x) = w' x + b + epsilon
x ~ U[-3, 3]^d
w = [1/d, 2/d, ..., 1]
b = 1
epsilon ~ N(0, 0.1)
"""
x_range = [-3, 3]
rng = get_rng(seed=8948394)
w = numpy.arange(1, d + 1) / float(d)
b = 1.
while True:
x = rng.uniform(low=x_range[0], high=x_range[1], size=d)
epsilon = rng.normal(loc=0, scale=0.1)
y = numpy.dot(w, x) + b + epsilon
yield as_array(x, y)
def get_data_f4():
"""
f4(x) = x
x increases by 1 at each sample, starting at 0.
"""
x = 0.
while True:
yield as_array([x], [x / 1000])
x += 1
def get_data_mnist(n_train, n_valid, n_test):
"""
MNIST dataset.
Return first the validation samples, then the test samples, then keep
iterating on the training samples.
"""
dlt_dir = dlt.__path__[0]
mnist_dataset = os.path.realpath(os.path.join(dlt_dir, '..', 'data',
'mnist.pkl.gz'))
assert os.path.exists(mnist_dataset)
datasets = load_data(mnist_dataset)
get_data = []
idx = tensor.lscalar('idx')
for data in datasets:
get_data.append(theano.function([idx], [data[0][idx], data[1][idx]]))
# First yield validation and test samples.
for dataset_idx, n_samples in ((1, n_valid), (2, n_test)):
for i in xrange(n_samples):
sample = get_data[dataset_idx](i)
yield as_array(*sample)
# Then iterate on training samples.
i = 0
while True:
sample = get_data[0](i)
yield as_array(*sample)
i = (i + 1) % n_train
def get_model(spec, **args):
"""
Return model given by `spec`.
:param spec: A string of the form "x-y-z-t" with `x` the size of the input
layer, `t` the size of the output layer, and `y` and `z` the sizes of
hidden layers. The number of hidden layers may be arbitrary.
By default the transfer function of hidden layers is `tanh`, while the
transfer function of the output layer is `identity`. These may be changed
by specifying the transfer function within parenthesis, for instance:
3-5-6(sigmoid)-3(identity)-1(sigmoid)
:param args: Arguments forwarded to ModelInterface.
"""
def parse_size(s, default_transfer_function):
"""
Return the pair (size, transfer_function) corresponding to string `s`.
"""
if '(' in s:
start = s.find('(')
end = s.find(')')
assert start > 0 and end > 0
transfer_function = s[start + 1:end]
else:
transfer_function = default_transfer_function
start = len(s)
return int(s[0:start]), transfer_function
sizes = spec.split('-')
assert len(sizes) >= 2
n_inputs, _ = parse_size(sizes[0], None)
assert _ is None # No transfer function on inputs.
n_outputs, output_transfer = parse_size(sizes[-1], 'identity')
hidden = map(parse_size, sizes[1:-1], ['tanh'] * (len(sizes) - 2))
n_hidden = [h[0] for h in hidden]
hidden_transfer = [h[1] for h in hidden]
task = args['task']
nnet = miniml.component.nnet.NNet(
task=task,
n_units=n_hidden + [n_outputs],
transfer_functions=hidden_transfer + [output_transfer],
hidden_transfer_function=None,
n_hidden=None, n_out=None)
# Properly initialize all weights.
w0v = nnet.weights[0].get_value(borrow=True)
n_hidden_1 = w0v.shape[1]
nnet.weights[0].set_value(numpy.zeros((n_inputs, n_hidden_1),
dtype=config.floatX))
nnet.seed = nnet.get_seed(n_inputs)
nnet.forget()
nnet.init_weights()
# Currently we ignore those, so better make sure they are not used.
assert not nnet.task_spec.new_params
assert nnet.regularization_coeff == 0
assert nnet.output_is_layer == -1
# Gather list of all parameters.
params = nnet.params
# Expose model interface.
model = miniml.utility.Storage(
task_spec=nnet.task_spec,
input=nnet.input,
params=params)
ui = ModelInterface(model=model, **args)
return ui
def get_rng(seed=None):
if seed is None:
seed = getattr(get_rng, 'seed', 1827)
get_rng.seed = seed * 2 # for next RNG
return numpy.random.RandomState(seed)
def minimize(model, task, **args):
best = [None]
count = [0]
lambdas = []
if task == 'regression':
cost_names = ['mse']
elif task == 'classification':
cost_names = ['nll', 'class_error']
else:
raise NotImplementedError(task)
errors = dict((c, []) for c in cost_names)
def callback(param_values, lambda_t):
count[0] += 1
cost = model.all_costs(param_values)
print '%s: %s (%s)' % (count[0],
', '.join('%.4f' % c[cost_names[0]] for c in cost),
param_values[0:3])
best[0] = param_values
for cname in cost_names:
errors[cname].append([c[cname] for c in cost])
lambdas.append(lambda_t)
leon_ncg_python(
make_f=model.make_cost,
w_0=model.params_to_vec(),
make_fprime=model.make_grad,
callback=callback,
#direction='polak-ribiere',
direction='hestenes-stiefel',
**args
)
return best[0], errors, lambdas, args['minibatch_size']
def plot(results, experiments, show_plots=True, expdir=None):
"""
Plot:
- true data vs. prediction
- training and test error over time
- evolution of lambda_t
"""
# Should we display on screen or just save as a file?
import matplotlib.pyplot as pyplot
if show_plots:
plot_ext = 'png'
else:
plot_ext = 'pdf'
# Model output (currently disabled).
if False:
to_plot = []
model_output = model.compute_output(model.data_input,
model.data_target)
for input, target, output in izip(model.data_input,
model.data_target,
model_output):
to_plot.append([input[0], target[0], output[0]])
to_plot = numpy.array(sorted(to_plot))
# Output.
fig = pyplot.figure()
pyplot.plot(to_plot[:, 0], to_plot[:, 1], label='true')
pyplot.plot(to_plot[:, 0], to_plot[:, 2], label='model')
pyplot.legend()
# Find maximum number of samples.
max_n_samples = 0
for exp_name, model, params, errors, lambdas, minibatch_size in results:
if minibatch_size is None:
# Offline batch setting.
minibatch_size = len(model.data_input['offline_train'])
max_n_samples = max(max_n_samples, len(errors[errors.keys()[0]]) * minibatch_size)
def complete(lst, n):
if len(lst) < n:
lst += [lst[-1]] * (n - len(lst))
def get_figure(i):
if show_plots:
return pyplot.figure(i)
else:
return pyplot.figure(i, figsize=(15, 15))
plot_data = {
'offline_train': {},
'test': {},
'lambda_t': {},
}
for exp_name, model, params, errors, lambdas, minibatch_size in results:
model.fill_params(params)
# Figure out x axis (number of samples visited).
if minibatch_size is None:
# Offline batch setting.
minibatch_size = len(model.data_input['offline_train'])
x_vals = range(minibatch_size, max_n_samples + 1,
minibatch_size)
fig_idx = 1
for cname in sorted(errors):
# Offline training error.
fig = get_figure(fig_idx)
fig_idx += 1
to_plot = [e[0] for e in errors[cname]]
complete(to_plot, len(x_vals))
pyplot.plot(x_vals, to_plot, label=exp_name)
plot_data['offline_train'].setdefault(cname, {})
plot_data['offline_train'][cname][exp_name] = (x_vals, to_plot)
if False:
# Debug indicators of restarts.
for xv, lamb in izip(x_vals, lambdas):
if lamb == 0:
pyplot.axvline(x=xv)
# Test error.
fig = get_figure(fig_idx)
fig_idx += 1
to_plot = [e[1] for e in errors[cname]]
complete(to_plot, len(x_vals))
pyplot.plot(x_vals, to_plot, label=exp_name)
plot_data['test'].setdefault(cname, {})
plot_data['test'][cname][exp_name] = (x_vals, to_plot)
# Evolution of lambda_t.
fig = get_figure(fig_idx)
fig_idx += 1
pyplot.plot(x_vals[0:len(lambdas)], lambdas, label=exp_name)
plot_data['lambda_t'][exp_name] = (x_vals[0:len(lambdas)], lambdas)
fig_idx = 1
for cname in sorted(errors):
# Offline training error.
pyplot.figure(fig_idx)
fig_idx += 1
pyplot.yscale('log')
pyplot.xlabel('n_samples')
pyplot.ylabel('offline training %s' % cname)
pyplot.legend()
if expdir is not None:
pyplot.savefig(os.path.join(expdir, 'train_%s.%s' % (cname, plot_ext)))
# Test error.
pyplot.figure(fig_idx)
fig_idx += 1
pyplot.yscale('log')
pyplot.xlabel('n_samples')
pyplot.ylabel('test %s' % cname)
pyplot.legend()
if expdir is not None:
pyplot.savefig(os.path.join(expdir, 'test_%s.%s' % (cname, plot_ext)))
# Lambda.
pyplot.figure(fig_idx)
fig_idx += 1
pyplot.xlabel('k')
pyplot.ylabel('lambda_t')
pyplot.legend()
if expdir is not None:
pyplot.savefig(os.path.join(expdir, 'lambda_t.%s' % plot_ext))
f_out = open(os.path.join(expdir, 'results.pkl'), 'wb')
cPickle.dump(plot_data, f_out, protocol=-1)
f_out.close()
# Show plots.
if show_plots:
pyplot.show()
def test(data_spec='mnist(%(n_offline_train)s,0,%(n_test)s)',
model_spec='784-%(n_hidden)s-10', n_offline_train=500, n_test=100,
n_hidden=10, task='classification',
experiments=None, show_plots=True, expdir=None, max_samples=300000,
exp_type=None, exp_mb_size=None, exp_offset=None, exp_normalize=True):
results = []
model_spec = model_spec % {'n_hidden': n_hidden}
data_spec = data_spec % {'n_offline_train': n_offline_train,
'n_test': n_test}
if exp_type is not None:
# Experiment parameters are provided on the command line: it means
# the 'experiments' parameter must be None.
assert experiments is None
if exp_type == 'batch':
raise NotImplementedError()
elif exp_type == 'online':
exp_data = {'minibatch_size': exp_mb_size,
'minibatch_offset': exp_offset,
'normalize': exp_normalize,
}
assert None not in exp_data.values()
for param_name, param_val in exp_data.iteritems():
if isinstance(param_val, basestring):
# Comma-separated values to be tried.
exp_data[param_name] = map(ml.util.convert_from_string,
param_val.split(','))
if len(exp_data[param_name]) > 1:
raise NotImplementedError('Still need to implement '
'multiple combinations')
else:
exp_data[param_name] = [param_val]
# Basic implementation when there are no multiple combinations.
experiments = 'online_%s_%s' % (exp_data['minibatch_size'][0],
exp_data['minibatch_offset'][0])
if exp_data['normalize'][0]:
experiments += '_normalize'
if experiments is not None:
print 'Experiments: %s' % experiments
def make_exp(spec):
# Return dictionary of options from an experiment's spec string.
params = spec.split('_')
normalize = 'normalize' in params
constrain_lambda = 'neglambda' not in params
if 'restart' in params:
restart_every = 1
else:
restart_every = 0
batch_size = params[1]
if batch_size == 'all':
batch_size = n_offline_train
else:
batch_size = int(batch_size)
assert batch_size <= n_offline_train
maxiter = max_samples / batch_size
if params[0] == 'batch':
minibatch_size = None
minibatch_offset = None
n_off = batch_size
elif params[0] == 'online':
minibatch_size = batch_size
minibatch_offset = int(params[2])
n_off = n_offline_train
else:
raise NotImplementedError(params[0])
return dict(
minibatch_size=minibatch_size,
minibatch_offset=minibatch_offset,
maxiter=maxiter,
normalize=normalize,
restart_every=restart_every,
constrain_lambda=constrain_lambda,
n_offline_train=n_off)
if experiments is None:
experiments = (
'batch_all_normalize',
#'batch_100_normalize',
#'batch_500_normalize',
#'batch_1000',
#'batch_1000_normalize',
#'batch_1010_normalize',
#'batch_2000',
#'batch_2000_normalize',
#'batch_2000_normalize_neglambda',
#'batch_5000',
#'batch_5000_normalize',
#'batch_5000_normalize_neglambda',
#'batch_10000',
#'batch_10000_normalize',
#'batch_10000_normalize_neglambda',
#'batch_10000_restart',
#'batch_50000_normalize',
#'online_1000_1_normalize',
#'online_1000_10_normalize',
#'online_1000_10_normalize_neglambda',
#'online_1000_100',
#'online_1000_100_normalize',
#'online_1000_100_normalize_neglambda',
#'online_1000_1000_normalize',
#'online_1000_1000_normalize_neglambda',
#'online_1000_1000_normalize_restart',
#'online_10000_1',
#'online_10000_1_normalize',
#'online_10000_10',
#'online_10000_10_normalize',
#'online_10000_100',
#'online_10000_100_normalize',
#'online_10000_100_normalize_neglambda',
#'online_10000_100_normalize_restart',
#'online_10000_1000',
#'online_10000_1000_normalize',
#'online_10000_1000_normalize_neglambda',
#'online_10000_1000_restart',
#'online_10000_10000',
#'online_10000_10000_normalize',
#'online_10000_10000_normalize_neglambda',
#'online_10000_10000_normalize_restart',
)
else:
experiments = experiments.split(',')
experiments = dict((k, make_exp(k)) for k in experiments)
for exp_name, exp_args in sorted(experiments.iteritems()):
data_iter = get_data(data_spec)
exp_args = exp_args.copy()
n_off = exp_args.pop('n_offline_train')
model = get_model(spec=model_spec, data_iter=data_iter,
n_offline_train=n_off,
n_test=n_test,
task=task)
results.append([exp_name, model] + list(minimize(
model=model, task=task, **exp_args)))
plot(results, experiments, show_plots=show_plots, expdir=expdir)
def test_ncg_2(profile=True, pydot_print=True):
rng = numpy.random.RandomState(232)
all_vals = numpy.asarray(
rng.uniform(size=(500*500,)),
dtype=theano.config.floatX)
idx = 0
vW0 = all_vals.reshape((500,500))
vx = numpy.asarray(
rng.uniform(size=(2000,500)), dtype=theano.config.floatX)
vy = numpy.asarray(
rng.uniform(size=(2000,500)), dtype=theano.config.floatX)
W0 = theano.shared(vW0, 'W0')
#W0 = tensor.specify_shape(_W0, vW0.shape)
#W0.name = 'W0'
x = theano.shared(vx, 'x')
#x = tensor.specify_shape(_x, vx.shape)
#x.name = 'x'
y = theano.shared(vy, 'y')
#y = tensor.specify_shape(_y, vy.shape)
#y.name = 'y'
def f(W0):
return ((tensor.dot(x,W0) - y)**2).mean().mean()
#return ((tensor.dot(x,W0) - y)**2).mean().mean() + abs(x).mean().mean()
print 'Executing ncg'
print '>>> Generating Graph'
t0 = time.time()
answers = leon_ncg(f, [W0], [], maxiter = 6,
profile = profile)
tf = time.time() - t0
print 'It took', tf, 'sec'
print '>>> Compiling graph'
t0 = time.time()
func = theano.function([], answers, profile = profile,
name = 'test_fmincg_2',
mode = theano.Mode(linker='cvm'))
tf = time.time() - t0
print 'It took', tf, 'sec'
if pydot_print:
print '>>> Plotting graph'
theano.printing.pydotprint(func,'t2_fmin_cg.png',
with_ids = True,
high_contrast = True,
scan_graphs = True)
print 'Optimizing'
t_th = 0
t_py = 0
for k in xrange(1):
t0 = time.time()
th_rval = func()[0]
t_th += time.time() - t0
print '-------- NOW SCIPY RESULTS ------'
allw = tensor.vector('all')
#allw = tensor.specify_shape(_allw, all_vals.shape)
idx = 0
W0 = allw.reshape((500,500))
out = f(W0)
func = theano.function([allw], out)
gall = tensor.grad(out, allw)
fprime = theano.function([allw], gall)
if pydot_print:
theano.printing.pydotprint(func, 't2_f.png', with_ids = True,
high_contrast = True)
theano.printing.pydotprint(fprime,'t2_fprime.png', with_ids = True,
high_contrast = True)
# FIRST RUN with full_output to get an idea of how many steps where done
t0 = time.time()
rval = py_fmin_cg(func, all_vals, fprime = fprime,
maxiter = 6,
full_output = 1,
disp = 1)[1]
t_py += time.time() - t0
# rest runs with full_output 0
'''
for k in xrange(1):
t0 = time.time()
rval = py_fmin_cg(func, all_vals, fprime = fprime,
maxiter = 6,
full_output = 1,
disp = 0 )[1]
t_py += time.time() - t0
'''
print 'THEANO output :: ',th_rval
print 'NUMPY output :: ',rval
print
print 'Timings'
print
print 'theano ---------> time %e'% t_th
print 'numpy ---------> time %e'% t_py
def main():
ml.util.run_with_try(_main)
def _main():
# Parse arguments.
args = {}
for arg in sys.argv[1:]:
key, val = arg.split('=')
args[key] = ml.util.convert_from_string(val)
if key == 'show_plots' and not args[key]:
matplotlib.use('pdf')
global miniml
assert miniml is None
import miniml
expdir = miniml.utility.make_expdir(state=args)
test(expdir=expdir, **args)
#test_ncg_2()
return 0
if __name__ == '__main__':
sys.exit(main())