-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathncg.py
429 lines (373 loc) · 14.6 KB
/
ncg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
"""
Experimental non-linear conjugate gradient.
"""
__authors__ = "Olivier Delalleau, Razvan Pascanu"
__copyright__ = "(c) 2011, Universite de Montreal"
__license__ = "BSD"
__contact__ = "Olivier Delalleau <delallea@iro>"
from itertools import izip
import numpy
from scipy.optimize.optimize import (
_epsilon, line_search_wolfe1, line_search_wolfe2, vecnorm,
wrap_function)
import theano
import theano.tensor as TT
from theano.ifelse import ifelse
from theano.scan_module import until
from pylearn2.optimization.ncg import linesearch_module as linesearch
from pylearn2.optimization.ncg.ncg_module import (
lazy_or, zero)
def leon_ncg_theano(cost_fn, x0s, args=(), gtol=1e-5,
maxiter=None, profile=False):
"""
Minimize a function using a nonlinear conjugate gradient algorithm.
Parameters
----------
cost_fn : callable f(*(xs+args))
Objective function to be minimized.
x0s : list of theano tensors
Initial guess.
args : tuple
Extra arguments passed to cost_fn.
gtol : float
Stop when norm of gradient is less than gtol.
maxiter : int
Maximum number of iterations allowed for CG
profile: flag (boolean)
If profiling information should be printed
Returns
-------
fopt : float
Minimum value found, f(xopt).
xopt : ndarray
Parameters which minimize f, i.e. f(xopt) == fopt.
Notes
-----
Optimize the function, f, whose gradient is given by fprime
using the nonlinear conjugate gradient algorithm of Polak and
Ribiere. See Wright & Nocedal, 'Numerical Optimization',
1999, pg. 120-122.
This function mimics `fmin_cg` from `scipy.optimize`.
"""
if type(x0s) not in (tuple, list):
x0s = [x0s]
else:
x0s = list(x0s)
if type(args) not in (tuple, list):
args = [args]
else:
args = list(args)
if maxiter is None:
len_x0 = sum(x0.size for x0 in x0s)
maxiter = len_x0 * 200
out = cost_fn(*(x0s+args))
global_x0s = [x for x in x0s]
def f(*nw_x0s):
rval = theano.clone(out, replace=dict(zip(global_x0s, nw_x0s)))
#rval = cost_fn(*nw_x0s)
return rval
def myfprime(*nw_x0s):
gx0s = TT.grad(out, global_x0s, keep_wrt_type=True)
rval = theano.clone(gx0s, replace=dict(zip(global_x0s, nw_x0s)))
#rval = TT.grad(cost_fn(*nw_x0s), nw_x0s)
return [x for x in rval]
n_elems = len(x0s)
def fmin_cg_loop(old_fval, old_old_fval, *rest):
xks = rest[:n_elems]
gfks = rest[n_elems:n_elems * 2]
maxs = [ abs(gfk).max(axis=range(gfk.ndim)) for gfk in gfks ]
if len(maxs) == 1:
gnorm = maxs[0]
else:
gnorm = TT.maximum(maxs[0], maxs[1])
for dx in maxs[2:]:
gnorm = TT.maximum(gnorm, dx)
pks = rest[n_elems*2:]
deltak = sum((gfk * gfk).sum() for gfk in gfks)
old_fval_backup = old_fval
old_old_fval_backup = old_old_fval
alpha_k, old_fval, old_old_fval, derphi0, nw_gfks = \
linesearch.line_search_wolfe2(f,myfprime, xks, pks,
old_fval_backup,
old_old_fval_backup,
profile = profile,
gfks = gfks)
xks = [ ifelse(gnorm <= gtol, xk,
ifelse(TT.bitwise_or(TT.isnan(alpha_k),
TT.eq(alpha_k,
zero)), xk,
xk+alpha_k*pk)) for xk, pk in zip(xks,pks)]
gfkp1s_tmp = myfprime(*xks)
gfkp1s = [ ifelse(TT.isnan(derphi0), nw_x, x) for nw_x, x in
zip(gfkp1s_tmp, nw_gfks)]
yks = [gfkp1 - gfk for gfkp1, gfk in izip(gfkp1s, gfks)]
# Polak-Ribiere formula.
beta_k = TT.maximum(
zero,
sum((x * y).sum() for x, y in izip(yks, gfkp1s)) / deltak)
pks = [ ifelse(gnorm <= gtol, pk,
ifelse(TT.bitwise_or(TT.isnan(alpha_k),
TT.eq(alpha_k,
zero)), pk, -gfkp1 +
beta_k * pk)) for gfkp1,pk in zip(gfkp1s,pks) ]
gfks = [ifelse(gnorm <= gtol,
gfk,
ifelse(
TT.bitwise_or(TT.isnan(alpha_k),
TT.eq(alpha_k, zero)),
gfk,
gfkp1))
for (gfk, gfkp1) in izip(gfks, gfkp1s)]
stop = lazy_or(gnorm <= gtol, TT.bitwise_or(TT.isnan(alpha_k),
TT.eq(alpha_k, zero)))# warnflag = 2
old_fval = ifelse(gnorm >gtol, old_fval, old_fval_backup)
old_old_fval = ifelse(gnorm >gtol, old_old_fval,
old_old_fval_backup)
return ([old_fval, old_old_fval]+xks + gfks + pks,
until(stop))
gfks = myfprime(*x0s)
xks = x0s
old_fval = f(*xks)
old_old_fval = old_fval + numpy.asarray(5000, dtype=theano.config.floatX)
old_fval.name = 'old_fval'
old_old_fval.name = 'old_old_fval'
pks = [-gfk for gfk in gfks]
outs, _ = theano.scan(fmin_cg_loop,
outputs_info = [old_fval,
old_old_fval] + xks + gfks + pks,
n_steps = maxiter,
name = 'fmin_cg',
mode = theano.Mode(linker='cvm_nogc'),
profile = profile)
sol = [outs[0][-1]] + [x[-1] for x in outs[2:2+n_elems]]
return sol
def leon_ncg_python(make_f, w_0, make_fprime=None, gtol=1e-5, norm=numpy.Inf,
maxiter=None, full_output=0, disp=1, retall=0, callback=None,
direction='hestenes-stiefel',
minibatch_size=None,
minibatch_offset=None,
restart_every=0,
normalize=False,
constrain_lambda=True,
):
"""Minimize a function using a nonlinear conjugate gradient algorithm.
Parameters
----------
make_f : callable make_f(k0, k1)
When called with (k0, k1) as arguments, return a function f such that
f(w) is the objective to be minimize at parameter w, on minibatch x_k0
to x_k1. If k1 is None then the minibatch should contain all the
remaining data.
w_0 : ndarray
Initial guess.
make_fprime : callable make_f'(k0, k1)
Same as `make_f`, but to compute the derivative of f on a minibatch.
gtol : float
Stop when norm of gradient is less than gtol.
norm : float
Order of vector norm to use. -Inf is min, Inf is max.
size (can be scalar or vector).
callback : callable
An optional user-supplied function, called after each
iteration. Called as callback(w_t, lambda_t), where w_t is the
current parameter vector and lambda_t the coefficient for the
new direction.
direction : string
Formula used to computed the new direction, among:
- polak-ribiere
- hestenes-stiefel
minibatch_size : int
Size of each minibatch. Use None for batch learning.
minibatch_offset : int
Shift of the minibatch. Use None to use the minibatch size (i.e. no
overlap at all).
restart_every : int
Force restart every this number of iterations. If <= 0, then never
force a restart.
normalize : bool
If True, then use the normalized gradient instead of the gradient
itself to find the next search direction, and always normalize the
search direction.
constrain_lambda : bool
If True, then the `lambda_t` factor used to compute conjugate directions
is constrained to be non-negative (it is thus set to zero if the formula
given by `direction` computes a negative value).
Returns
-------
xopt : ndarray
Parameters which minimize f, i.e. f(xopt) == fopt.
fopt : float
Minimum value found, f(xopt).
func_calls : int
The number of function_calls made.
grad_calls : int
The number of gradient calls made.
warnflag : int
1 : Maximum number of iterations exceeded.
2 : Gradient and/or function calls not changing.
allvecs : ndarray
If retall is True (see other parameters below), then this
vector containing the result at each iteration is returned.
Other Parameters
----------------
maxiter : int
Maximum number of iterations to perform.
full_output : bool
If True then return fopt, func_calls, grad_calls, and
warnflag in addition to xopt.
disp : bool
Print convergence message if True.
retall : bool
Return a list of results at each iteration if True.
Notes
-----
Optimize the function, f, whose gradient is given by fprime
using the nonlinear conjugate gradient algorithm of Polak and
Ribiere. See Wright & Nocedal, 'Numerical Optimization',
1999, pg. 120-122.
"""
if minibatch_offset is None:
if minibatch_size is None:
# Batch learning: no offset is needed.
minibatch_offset = 0
else:
# Use the same offset as the minibatch size.
minibatch_offset = minibatch_size
w_0 = numpy.asarray(w_0).flatten()
if maxiter is None:
maxiter = len(w_0)*200
k0 = 0
k1 = minibatch_size
assert make_fprime is not None
f = make_f(k0, k1)
fprime = make_fprime(k0, k1)
func_calls = [0]
grad_calls = [0]
tmp_func_calls, f = wrap_function(f, ())
tmp_grad_calls, myfprime = wrap_function(fprime, ())
g_t = myfprime(w_0)
t = 0
N = len(w_0)
w_t = w_0
if retall:
allvecs = [w_t]
warnflag = 0
if normalize:
d_t = -g_t / numpy.linalg.norm(g_t)
else:
d_t = -g_t
gnorm = vecnorm(g_t, ord=norm)
w_t_previous = None
while (gnorm > gtol) and (t < maxiter):
#print '||g_t|| = %s' % numpy.linalg.norm(g_t)
# Since the function changes at each iteration, we cannot re-use
# previous function values.
old_fval = f(w_t)
if w_t_previous is None:
old_old_fval = old_fval + 5000
else:
old_old_fval = f(w_t_previous)
# These values are modified by the line search, even if it fails.
old_fval_backup = old_fval
old_old_fval_backup = old_old_fval
alpha_t, fc, gc, old_fval, old_old_fval, h_t = \
line_search_wolfe1(f, myfprime, w_t, d_t, g_t, old_fval,
old_old_fval, c2=0.4)
if alpha_t is None: # line search failed -- use different one.
print '*********************************** LINE SEARCH FAILURE *********************************'
alpha_t, fc, gc, old_fval, old_old_fval, h_t = \
line_search_wolfe2(f, myfprime, w_t, d_t, g_t,
old_fval_backup, old_old_fval_backup)
print '*********************************** %s *********************************' % alpha_t
if alpha_t is None or alpha_t == 0:
# This line search also failed to find a better solution.
raise AssertionError()
warnflag = 2
break
print 'alpha_t = %s' % alpha_t
# Update weights.
w_tp1 = w_t + alpha_t * d_t
# Compute derivative after the weight update, if not done already.
if h_t is None:
h_t = myfprime(w_tp1)
else:
assert (h_t == myfprime(w_tp1)).all() # Sanity check.
# Switch to next minibatch.
func_calls[0] += tmp_func_calls[0]
grad_calls[0] += tmp_grad_calls[0]
k0 += minibatch_offset
if minibatch_size is None:
k1 = None
else:
k1 = k0 + minibatch_size
tmp_func_calls, f = wrap_function(make_f(k0, k1), ())
tmp_grad_calls, myfprime = wrap_function(make_fprime(k0, k1), ())
# Compute derivative on new minibatch.
g_tp1 = myfprime(w_tp1)
if normalize:
g_tp1_for_dt = g_tp1 / numpy.linalg.norm(g_tp1)
else:
g_tp1_for_dt = g_tp1
if retall:
allvecs.append(w_tp1)
h_t_minus_g_t = h_t - g_t
if direction == 'polak-ribiere':
# Polak-Ribiere.
delta_t = numpy.dot(g_t, g_t)
lambda_t = numpy.dot(h_t_minus_g_t, g_tp1_for_dt) / delta_t
elif direction == 'hestenes-stiefel':
# Hestenes-Stiefel.
lambda_t = numpy.dot(h_t_minus_g_t, g_tp1_for_dt) / numpy.dot(h_t_minus_g_t, d_t)
else:
raise NotImplementedError(direction)
if constrain_lambda and lambda_t < 0:
lambda_t = 0
if restart_every > 0 and (t + 1) % restart_every == 0:
lambda_t = 0
if lambda_t == 0:
print '*** RESTART ***'
else:
print 'lambda_t = %s' % lambda_t
d_t = -g_tp1_for_dt + lambda_t * d_t
if normalize:
d_t /= numpy.linalg.norm(d_t)
g_t = g_tp1
w_t_previous = w_t
w_t = w_tp1
gnorm = vecnorm(g_t, ord=norm)
if callback is not None:
callback(w_t, lambda_t)
t += 1
if disp or full_output:
fval = old_fval
if warnflag == 2:
if disp:
print "Warning: Desired error not necessarily achieved due to precision loss"
print " Current function value: %f" % fval
print " Iterations: %d" % t
print " Function evaluations: %d" % func_calls[0]
print " Gradient evaluations: %d" % grad_calls[0]
elif t >= maxiter:
warnflag = 1
if disp:
print "Warning: Maximum number of iterations has been exceeded"
print " Current function value: %f" % fval
print " Iterations: %d" % t
print " Function evaluations: %d" % func_calls[0]
print " Gradient evaluations: %d" % grad_calls[0]
else:
if disp:
print "Optimization terminated successfully."
print " Current function value: %f" % fval
print " Iterations: %d" % t
print " Function evaluations: %d" % func_calls[0]
print " Gradient evaluations: %d" % grad_calls[0]
if full_output:
retlist = w_t, fval, func_calls[0], grad_calls[0], warnflag
if retall:
retlist += (allvecs,)
else:
retlist = w_t
if retall:
retlist = (w_t, allvecs)
return retlist