forked from modAL-python/modAL
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmultilabel.py
257 lines (190 loc) · 10.2 KB
/
multilabel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
import numpy as np
from sklearn.base import BaseEstimator
from sklearn.multiclass import OneVsRestClassifier
from modAL.models import ActiveLearner
from modAL.utils.data import modALinput
from modAL.utils.selection import multi_argmax, shuffled_argmax
from typing import Tuple, Optional
from itertools import combinations
def _SVM_loss(multiclass_classifier: ActiveLearner,
X: modALinput, most_certain_classes: Optional[int] = None) -> np.ndarray:
"""
Utility function for max_loss and mean_max_loss strategies.
Args:
multiclass_classifier: sklearn.multiclass.OneVsRestClassifier instance for which the loss
is to be calculated.
X: The pool of samples to query from.
most_certain_classes: optional, indexes of most certainly predicted class for each instance.
If None, loss is calculated for all classes.
Returns:
np.ndarray of shape (n_instances, ), losses for the instances in X.
"""
predictions = 2*multiclass_classifier.predict(X)-1
n_classes = len(multiclass_classifier.classes_)
if most_certain_classes is None:
cls_mtx = 2*np.eye(n_classes, n_classes) - 1
loss_mtx = np.maximum(1-np.dot(predictions, cls_mtx), 0)
return loss_mtx.mean(axis=1)
else:
cls_mtx = -np.ones(shape=(len(X), n_classes))
for inst_idx, most_certain_class in enumerate(most_certain_classes):
cls_mtx[inst_idx, most_certain_class] = 1
cls_loss = np.maximum(1 - np.multiply(cls_mtx, predictions), 0).sum(axis=1)
return cls_loss
def SVM_binary_minimum(classifier: ActiveLearner, X_pool: modALinput,
random_tie_break: bool = False) -> np.ndarray:
"""
SVM binary minimum multilabel active learning strategy. For details see the paper
Klaus Brinker, On Active Learning in Multi-label Classification
(https://link.springer.com/chapter/10.1007%2F3-540-31314-1_24)
Args:
classifier: The multilabel classifier for which the labels are to be queried. Must be an SVM model
such as the ones from sklearn.svm.
X_pool: The pool of samples to query from.
random_tie_break: If True, shuffles utility scores to randomize the order. This
can be used to break the tie when the highest utility score is not unique.
Returns:
The index of the instance from X_pool chosen to be labelled;
the instance from X_pool chosen to be labelled.
"""
decision_function = np.array([svm.decision_function(X_pool)
for svm in classifier.estimator.estimators_]).T
min_abs_dist = np.min(np.abs(decision_function), axis=1)
if not random_tie_break:
return np.argmin(min_abs_dist)
return shuffled_argmax(min_abs_dist)
def max_loss(classifier: OneVsRestClassifier, X_pool: modALinput,
n_instances: int = 1, random_tie_break: bool = False) -> np.ndarray:
"""
Max Loss query strategy for SVM multilabel classification.
For more details on this query strategy, see
Li et al., Multilabel SVM active learning for image classification
(http://dx.doi.org/10.1109/ICIP.2004.1421535)
Args:
classifier: The multilabel classifier for which the labels are to be queried. Should be an SVM model
such as the ones from sklearn.svm. Although the function will execute for other models as well,
the mathematical calculations in Li et al. work only for SVM-s.
X_pool: The pool of samples to query from.
random_tie_break: If True, shuffles utility scores to randomize the order. This
can be used to break the tie when the highest utility score is not unique.
Returns:
The index of the instance from X_pool chosen to be labelled;
the instance from X_pool chosen to be labelled.
"""
assert len(X_pool) >= n_instances, 'n_instances cannot be larger than len(X_pool)'
most_certain_classes = classifier.predict_proba(X_pool).argmax(axis=1)
loss = _SVM_loss(classifier, X_pool, most_certain_classes=most_certain_classes)
if not random_tie_break:
return multi_argmax(loss, n_instances)
return shuffled_argmax(loss, n_instances)
def mean_max_loss(classifier: OneVsRestClassifier, X_pool: modALinput,
n_instances: int = 1, random_tie_break: bool = False) -> np.ndarray:
"""
Mean Max Loss query strategy for SVM multilabel classification.
For more details on this query strategy, see
Li et al., Multilabel SVM active learning for image classification
(http://dx.doi.org/10.1109/ICIP.2004.1421535)
Args:
classifier: The multilabel classifier for which the labels are to be queried. Should be an SVM model
such as the ones from sklearn.svm. Although the function will execute for other models as well,
the mathematical calculations in Li et al. work only for SVM-s.
X_pool: The pool of samples to query from.
random_tie_break: If True, shuffles utility scores to randomize the order. This
can be used to break the tie when the highest utility score is not unique.
Returns:
The index of the instance from X_pool chosen to be labelled;
the instance from X_pool chosen to be labelled.
"""
assert len(X_pool) >= n_instances, 'n_instances cannot be larger than len(X_pool)'
loss = _SVM_loss(classifier, X_pool)
if not random_tie_break:
return multi_argmax(loss, n_instances)
return shuffled_argmax(loss, n_instances)
def min_confidence(classifier: OneVsRestClassifier, X_pool: modALinput,
n_instances: int = 1, random_tie_break: bool = False) -> np.ndarray:
"""
MinConfidence query strategy for multilabel classification.
For more details on this query strategy, see
Esuli and Sebastiani., Active Learning Strategies for Multi-Label Text Classification
(http://dx.doi.org/10.1007/978-3-642-00958-7_12)
Args:
classifier: The multilabel classifier for which the labels are to be queried.
X_pool: The pool of samples to query from.
random_tie_break: If True, shuffles utility scores to randomize the order. This
can be used to break the tie when the highest utility score is not unique.
Returns:
The index of the instance from X_pool chosen to be labelled;
the instance from X_pool chosen to be labelled.
"""
classwise_confidence = classifier.predict_proba(X_pool)
classwise_min = np.min(classwise_confidence, axis=1)
if not random_tie_break:
return multi_argmax(-classwise_min, n_instances)
return shuffled_argmax(-classwise_min, n_instances)
def avg_confidence(classifier: OneVsRestClassifier, X_pool: modALinput,
n_instances: int = 1, random_tie_break: bool = False) -> np.ndarray:
"""
AvgConfidence query strategy for multilabel classification.
For more details on this query strategy, see
Esuli and Sebastiani., Active Learning Strategies for Multi-Label Text Classification
(http://dx.doi.org/10.1007/978-3-642-00958-7_12)
Args:
classifier: The multilabel classifier for which the labels are to be queried.
X_pool: The pool of samples to query from.
random_tie_break: If True, shuffles utility scores to randomize the order. This
can be used to break the tie when the highest utility score is not unique.
Returns:
The index of the instance from X_pool chosen to be labelled;
the instance from X_pool chosen to be labelled.
"""
classwise_confidence = classifier.predict_proba(X_pool)
classwise_mean = np.mean(classwise_confidence, axis=1)
if not random_tie_break:
return multi_argmax(classwise_mean, n_instances)
return shuffled_argmax(classwise_mean, n_instances)
def max_score(classifier: OneVsRestClassifier, X_pool: modALinput,
n_instances: int = 1, random_tie_break: bool = 1) -> np.ndarray:
"""
MaxScore query strategy for multilabel classification.
For more details on this query strategy, see
Esuli and Sebastiani., Active Learning Strategies for Multi-Label Text Classification
(http://dx.doi.org/10.1007/978-3-642-00958-7_12)
Args:
classifier: The multilabel classifier for which the labels are to be queried.
X_pool: The pool of samples to query from.
random_tie_break: If True, shuffles utility scores to randomize the order. This
can be used to break the tie when the highest utility score is not unique.
Returns:
The index of the instance from X_pool chosen to be labelled;
the instance from X_pool chosen to be labelled.
"""
classwise_confidence = classifier.predict_proba(X_pool)
classwise_predictions = classifier.predict(X_pool)
classwise_scores = classwise_confidence*(classwise_predictions - 1/2)
classwise_max = np.max(classwise_scores, axis=1)
if not random_tie_break:
return multi_argmax(classwise_max, n_instances)
return shuffled_argmax(classwise_max, n_instances)
def avg_score(classifier: OneVsRestClassifier, X_pool: modALinput,
n_instances: int = 1, random_tie_break: bool = False) -> np.ndarray:
"""
AvgScore query strategy for multilabel classification.
For more details on this query strategy, see
Esuli and Sebastiani., Active Learning Strategies for Multi-Label Text Classification
(http://dx.doi.org/10.1007/978-3-642-00958-7_12)
Args:
classifier: The multilabel classifier for which the labels are to be queried.
X_pool: The pool of samples to query from.
random_tie_break: If True, shuffles utility scores to randomize the order. This
can be used to break the tie when the highest utility score is not unique.
Returns:
The index of the instance from X_pool chosen to be labelled;
the instance from X_pool chosen to be labelled.
"""
classwise_confidence = classifier.predict_proba(X_pool)
classwise_predictions = classifier.predict(X_pool)
classwise_scores = classwise_confidence*(classwise_predictions-1/2)
classwise_mean = np.mean(classwise_scores, axis=1)
if not random_tie_break:
return multi_argmax(classwise_mean, n_instances)
return shuffled_argmax(classwise_mean, n_instances)