-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathpipeline.qmd
734 lines (665 loc) · 21.6 KB
/
pipeline.qmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
---
title: "Model pipeline"
output: html_document
---
```{r setup, include = FALSE}
knitr::opts_chunk$set(collapse = TRUE,
comment = "#>",
tar_interactive = interactive())
library(targets)
tar_unscript()
```
## Intro
We use the [{targets}](https://books.ropensci.org/targets/) package to manage
the code pipeline used for running the model.
See [setup](setup.qmd) for more info.
## Globals
We first define some global options/functions common to all targets. The list of
packages loaded below are what targets needs to run the pipeline - along with
the targets package itself and two additional targets-related
packages: [tarchetypes](https://docs.ropensci.org/tarchetypes/index.html) and
[stantargets](https://docs.ropensci.org/stantargets/index.html). If you don't
want to use renv then manually installing these should be sufficient.
```{targets example-globals, tar_globals = TRUE}
library(targets)
library(tarchetypes)
library(stantargets)
options(tidyverse.quiet = TRUE)
tar_source() # grab all functions in R folder
tar_option_set(packages = c(
"readr",
"tidyr",
"rvest",
"glue",
"dplyr",
"stringr",
"lubridate",
"forcats",
"ggplot2",
"svglite",
"scales",
"janitor",
"ggthemes",
"nzelect",
"purrr"
))
```
## Targets
The canonical location for NZ polling data appears to be Wikipedia pages.
The first part of this pipeline downloads the poll results from the Wikipedia pages.
It also fetches recent election results from the electoral commission.
Once the poll results have been downloaded they are filtered and marshalled into the
format need by the model.
The model is then run and a few charts are generated from the model results.
### URLs
Tarchetypes has a useful [function `tar_url`](https://docs.ropensci.org/tarchetypes/reference/tar_formats.html)
for working with urls. When the pipeline is run it will check the `last-modified`
header with the remote site. If this has changed any targets that depend on the
url will be run again. Checking the URL is a little slow for regular development
so [tar_cue_skip](https://docs.ropensci.org/tarchetypes/reference/tar_cue_skip.html)
can be used to skip the check - just set `skip_url_check` below to `TRUE`.
Note that often this results in one of the poll objects being extracted again but
no further dependencies are run as the resulting data has not changed. This ensures
that minor changes to the page do not trigger a model re-run.
The code to generate the urls is defined in [R/urls.R](https://github.com/nzherald/nzh-poll-of-polls/blob/main/R/urls.R)
```{targets urls}
skip_url_check <- FALSE
list(
tar_url(polls2011_url, wikipedia_poll_url(2011), cue = tar_cue_skip(skip_url_check)),
tar_url(polls2014_url, wikipedia_poll_url(2014), cue = tar_cue_skip(skip_url_check)),
tar_url(polls2017_url, wikipedia_poll_url(2017), cue = tar_cue_skip(skip_url_check)),
tar_url(polls2020_url, wikipedia_poll_url(2020), cue = tar_cue_skip(skip_url_check)),
tar_url(polls2023_url, wikipedia_poll_url(2023), cue = tar_cue_skip(skip_url_check)),
tar_url(results2008_url, election_results_summary(2008), cue = tar_cue_skip(skip_url_check)),
tar_url(results2011_url, election_results_summary(2011), cue = tar_cue_skip(skip_url_check)),
tar_url(results2014_url, election_results_summary(2014), cue = tar_cue_skip(skip_url_check)),
tar_url(results2017_url, election_results_summary(2017), cue = tar_cue_skip(skip_url_check)),
tar_url(results2020_url, election_results_summary(2020), cue = tar_cue_skip(skip_url_check))
)
```
### Download polls
Polling for each election is extracted into it's own object. Then all the
objects are combined into a single consistent object.
The code that does the heavy lifting is in
[R/read-polls.R](https://github.com/nzherald/nzh-poll-of-polls/blob/main/R/read-polls.R)
```{targets polls}
list(
tar_target(polls2011, extract_poll_results_2011(polls2011_url)),
tar_target(polls2014, extract_poll_results_2014(polls2014_url)),
tar_target(polls2017, extract_poll_results_2017(polls2017_url)),
tar_target(polls2020, extract_poll_results_2020(polls2020_url)),
tar_target(polls2023, extract_poll_results_2023(polls2023_url)),
tar_target(polls, combine_polls(polls2011,polls2014,polls2017,polls2020,polls2023))
)
```
The electoral commission produces usually formatted csv files - the code in
[R/fetch-results.R](https://github.com/nzherald/nzh-poll-of-polls/blob/main/R/fetch-results.R)
reads just a small portion of the results file.
```{targets results}
list(
tar_target(results2020, fetch_results(results2020_url, 17, 2020)),
tar_target(results2017, fetch_results(results2017_url, 16, 2017)),
tar_target(results2014, fetch_results(results2014_url, 15, 2014)),
tar_target(results2011, fetch_results(results2011_url, 13, 2011)),
tar_target(results2008, fetch_results(results2008_url, 19, 2008)),
tar_target(
results,
combine_results(
results2008,
results2011,
results2014,
results2017,
results2020
)
)
)
```
### Selecting parties and pollsters
Only include pollsters who have provided a poll for the 2023 election and who
use the NZ Political Polling Code.
Include parties who currently have a seat in parliament or who have polled over
2.5% three times.
```{targets params}
list(
tar_target(pollsters, polls |>
filter(Election == 2023) |>
distinct(Pollster) |>
filter(!grepl('Roy|Horizon', Pollster))),
tar_target(parties_in_parliament,
tibble(Party = c('ACT', 'Green', 'Labour', 'National', 'Te Pāti Māori'))),
tar_target(parties, polls |>
filter(Election == 2023, VotingIntention > 0.025) |>
filter(n() > 3, .by=Party) |>
distinct(Party) |>
union(parties_in_parliament) |>
arrange(Party)),
tar_target(pollsters2020, polls |>
filter(Election == 2020,
Pollster != 'YouGov') |> # Only one YouGov poll
distinct(Pollster)),
tar_target(parties_in_parliament2020,
tibble(Party = c('ACT', 'Green', 'Labour', 'National', 'NZ First'))),
tar_target(parties2020, polls |>
filter(Election == 2020, VotingIntention > 0.025) |>
filter(n() > 3, .by=Party) |>
distinct(Party) |>
union(parties_in_parliament2020) |>
arrange(Party)),
tar_target(party_colours,
tribble(
~Party, ~Colour,
"ACT", "#ffd100",
"Green", "#00491E",
"Labour", "#d82c20",
"Te Pāti Māori", "#D12C38",
"National", "#065BAA",
"NZ First", "#212529",
"TOP", "#09B598",
"Other", "#B3B3B3"
) |> mutate(Party = as_factor(Party)))
)
```
### Marshal the data
This code is very similar to Peter Ellis' code for marshalling polls and results
into a object for stan.
```{targets prep}
list(
tar_target(election_dates, ymd(c("2014-09-20", "2017-09-23", "2020-10-17", "2023-10-14"))),
tar_target(election_weeks, floor_date(election_dates, unit = 'week')),
tar_target(weeks_between_elections, as.integer(diff(election_weeks)) / 7),
tar_target(
elections,
results |>
filter(Election >= year(min(election_weeks))) |>
mutate(
Party = fct_other(Party, keep = parties$Party) |>
fct_relevel(parties$Party)
) |>
count(Party, Election, wt = Percentage, name = 'Percentage') |>
arrange(Party, Election) |>
pivot_wider(names_from = Party, values_from = Percentage, values_fill = 0) |>
select(-Election)
),
tar_target(
polls2,
polls |>
filter(Pollster %in% c(pollsters$Pollster), !is.na(MidPoint)) |>
mutate(
MidPoint = floor_date(MidPoint, unit = 'week'),
Party = fct_other(Party, keep = parties$Party) |>
fct_relevel(parties$Party)
) |>
filter(Party != 'Other') |>
mutate(Polled = sum(VotingIntention), .by = c(Pollster, MidPoint)) |>
rename(MidDate = MidPoint, ElectionYear = Election) |>
select(
`Date range`,
Party,
Pollster,
MidDate,
ElectionYear,
Polled,
VotingIntention
) |>
filter(ElectionYear %in% year(election_weeks[-1])) |>
arrange(Party, MidDate) |>
pivot_wider(
names_from = Party,
values_from = VotingIntention,
names_sort = TRUE,
values_fill = 0
) |>
mutate(Other = pmax(0, 1 - Polled),
MidDateNumber = 1 + as.numeric(MidDate - election_weeks[1]) / 7) |>
select(-Polled, -`Date range`)
),
tar_target(
polls3,
polls2 |>
arrange(Pollster, MidDate) |>
group_split(Pollster)
),
tar_target(parties_ss, names(elections)),
tar_target(
# estimate the standard errors. Note we are pretending they all have a sample size of 1000 -
# which the main five do, but not some of the smaller ones. Improvement would be to better deal with this.
all_ses,
polls2 |>
select(Pollster, ACT:Other) |>
pivot_longer(ACT:Other, names_to = 'Party', values_to = 'p') |>
summarise(
p = mean(p, na.rm = T),
se = sqrt(p * (1 - p) / 1000),
.by = c(Pollster, Party)
)
),
tar_target(
ses3,
all_ses |>
arrange(Pollster, Party) |>
group_split(Pollster)
),
tar_target(
d1, list(mu_elect1 = as.numeric(elections[1, ]),
mu_elect2 = as.numeric(elections[2, ]),
mu_elect3 = as.numeric(elections[3, ]),
n_parties = length(parties_ss),
n_weeks = weeks_between_elections,
# multiply the variance of all polls by 2. See my blog post of 9 July 2017.
inflator = sqrt(2),
y1_n = nrow(polls3[[1]]),
y1_values = polls3[[1]][ , 4:11],
y1_weeks = as.numeric(polls3[[1]]$MidDateNumber),
y1_se = ses3[[1]]$se,
y2_n = nrow(polls3[[2]]),
y2_values = polls3[[2]][ , 4:11],
y2_weeks = as.numeric(polls3[[2]]$MidDateNumber),
y2_se = ses3[[2]]$se,
y3_n = nrow(polls3[[3]]),
y3_values = polls3[[3]][ , 4:11],
y3_weeks = as.numeric(polls3[[3]]$MidDateNumber),
y3_se = ses3[[3]]$se,
y4_n = nrow(polls3[[4]]),
y4_values = polls3[[4]][ , 4:11],
y4_weeks = as.numeric(polls3[[4]]$MidDateNumber),
y4_se = ses3[[4]]$se,
reid_method = as.numeric(polls3[[4]]$MidDate >= as.Date("2017-01-01")),
n_pollsters = 4)
)
)
```
### 2020 version of the model
This is a bit of a nasty copy-paste from above - it runs a version of the model
for the 2020 election that we can use to check how well the model performs.
```{targets prep2020}
list(
tar_target(election_weeks2020, floor_date(ymd(
c("2011-11-26", "2014-09-20", "2017-09-23", "2020-10-17")
), unit = 'week')),
tar_target(weeks_between_elections2020, as.integer(diff(election_weeks)) / 7),
tar_target(
elections2020,
results |>
filter(Election >= year(min(election_weeks2020)) &
Election < year(max(election_weeks2020))) |>
mutate(
Party = fct_other(Party, keep = parties2020$Party) |>
fct_relevel(parties2020$Party)
) |>
count(Party, Election, wt = Percentage, name = 'Percentage') |>
arrange(Party, Election) |>
pivot_wider(names_from = Party, values_from = Percentage, values_fill = 0) |>
select(-Election)
),
tar_target(
polls22020,
polls |>
filter(Election %in% c(2014, 2017, 2020),
Pollster %in% c(pollsters2020$Pollster),
!is.na(MidPoint)) |>
mutate(
MidPoint = floor_date(MidPoint, unit = 'week'),
Party = fct_other(Party, keep = parties2020$Party) |>
fct_relevel(parties2020$Party)
) |>
filter(Party != 'Other') |>
mutate(Polled = sum(VotingIntention), .by = c(Pollster, MidPoint)) |>
rename(MidDate = MidPoint, ElectionYear = Election) |>
count(
Party,
Pollster,
MidDate,
ElectionYear,
Polled,
wt = VotingIntention,
name = "VotingIntention"
) |>
filter(MidDate <= election_weeks2020[4]) |>
arrange(Party, MidDate) |>
pivot_wider(
names_from = Party,
values_from = VotingIntention,
names_sort = TRUE,
values_fill = 0
) |>
mutate(Other = pmax(0, 1 - Polled),
MidDateNumber = 1 + as.numeric(MidDate - election_weeks2020[1]) / 7) |>
select(-Polled)
),
tar_target(
polls32020,
polls22020 |>
arrange(Pollster, MidDate) |>
group_split(Pollster)
),
tar_target(parties_ss2020, names(elections2020)),
tar_target(
# estimate the standard errors. Note we are pretending they all have a sample size of 1000 -
# which the main five do, but not some of the smaller ones. Improvement would be to better deal with this.
all_ses2020,
polls22020 |>
select(Pollster, ACT:Other) |>
pivot_longer(ACT:Other, names_to = 'Party', values_to = 'p') |>
summarise(
p = mean(p, na.rm = T),
se = sqrt(p * (1 - p) / 1000),
.by = c(Pollster, Party)
)
),
tar_target(
ses32020,
all_ses2020 |>
arrange(Pollster, Party) |>
group_split(Pollster)
),
tar_target(
d12020, list(mu_elect1 = as.numeric(elections2020[1, ]),
mu_elect2 = as.numeric(elections2020[2, ]),
mu_elect3 = as.numeric(elections2020[3, ]),
n_parties = length(parties_ss2020),
n_weeks = weeks_between_elections2020,
# multiply the variance of all polls by 2. See my blog post of 9 July 2017.
inflator = sqrt(2),
y1_n = nrow(polls32020[[1]]),
y1_values = polls32020[[1]][ , 4:9],
y1_weeks = as.numeric(polls32020[[1]]$MidDateNumber),
y1_se = ses32020[[1]]$se,
y2_n = nrow(polls32020[[2]]),
y2_values = polls32020[[2]][ , 4:9],
y2_weeks = as.numeric(polls32020[[2]]$MidDateNumber),
y2_se = ses32020[[2]]$se,
reid_method = as.numeric(polls32020[[2]]$MidDate >= as.Date("2017-01-01")),
y3_n = nrow(polls32020[[3]]),
y3_values = polls32020[[3]][ , 4:9],
y3_weeks = as.numeric(polls32020[[3]]$MidDateNumber),
y3_se = ses32020[[3]]$se,
n_pollsters = 3)
)
)
```
### Run the models
Uses `stantargets` to run the model - see
[tar_stan_mcmc](https://docs.ropensci.org/stantargets/reference/tar_stan_mcmc.html)
```{targets modelling}
list(
tar_stan_mcmc(
model2023,
"stan/model2023.stan",
dir = ".stan",
data = d1,
chains = 4,
parallel_chains = 4,
iter_sampling = 2000,
max_treedepth = 20,
deployment = "worker"
),
tar_stan_mcmc(
model2020,
"stan/model2020.stan",
dir = ".stan",
data = d12020,
chains = 4,
parallel_chains = 4,
iter_sampling = 2000,
max_treedepth = 20,
deployment = "worker"
)
)
```
### Charts
#### Voting intention
Current charts are more or less the same as some of Peter's charts. Future
versions will export the data to create more interactive charts.
```{targets charts}
list(
tar_target(
voting_intention_chartdata,
model2023_summary_model2023 |>
filter(str_starts(variable, "mu")) |>
mutate(
Party = rep(parties_ss, each = sum(weeks_between_elections)),
week = rep(1:sum(weeks_between_elections), length(parties_ss)),
week = min(election_weeks) + weeks(week)
)
),
tar_target(
voting_intention_chart,
voting_intention_chartdata |>
ggplot(aes(
x = week,
y = mean,
colour = Party,
fill = Party
)) +
geom_point(
data = gather(
polls2,
Party,
VotingIntention,-Pollster,-MidDate,-ElectionYear,-MidDateNumber
) |>
filter(VotingIntention != 0),
aes(x = MidDate, y = VotingIntention),
colour = "black",
size = 0.5
) +
geom_vline(
xintercept = as.numeric(election_dates),
colour = "grey60"
) +
scale_y_continuous(labels = percent) +
scale_x_date(breaks = ym(
c('2016-01', '2018-01', '2020-01', '2022-01')
), date_labels = '%Y') +
scale_fill_manual(values = party_colours$Colour, breaks = party_colours$Party) +
geom_line(
data = voting_intention_chartdata |> filter(week <= today()),
colour = "black"
) +
geom_ribbon(aes(ymin = q5, ymax = q95), alpha = 0.3, colour = NA) +
labs(y = NULL, x = NULL) +
theme_clean() +
theme(
plot.title.position = "plot",
legend.position = 'none',
strip.background = element_rect(fill = '#121617'),
strip.text = element_text(colour = 'white'),
plot.background = element_blank()
)
),
tar_file(voting_intention620, {
f <- "output/voting_intention620.svg"
ggsave(
f,
plot = voting_intention_chart +
facet_wrap(
~ factor(Party, levels = party_colours$Party),
scales = "free",
ncol = 2
),
dpi = 100,
width = 6.2,
height = 8
)
f
}),
tar_file(voting_intention375, {
f <- "output/voting_intention375.svg"
ggsave(
f,
plot = voting_intention_chart +
facet_wrap(
~ factor(Party, levels = party_colours$Party),
scales = "free",
ncol = 1
),
dpi = 100,
width = 3.75,
height = 10
)
f
})
)
```
#### Possible coaltion plots
Grab the simulation results for party vote for election night and the current
week. Currently hard coding the current week - but will need to do something better.
Assumption is hard-coded that parties that currently have an electorate seat will
keep at least one and no additional parties will pick up an electorate seat.
Future work will make this more flexible.
We render an mobile screen sized plot and the desktop sized plot and load these
as SVGs - slightly clunky but is actually a good way to display ggplot2 images
on the web.
```{targets seats}
simulate_seats <- function(sims) {
t(sapply(1:nrow(sims), function(i) {
allocate_seats(
votes = as.numeric(sims[i,]),
electorate = c(1, 1, 1, 1, 0, 1, 0),
parties = names(sims)
)$seats_v
})) |>
as_tibble() |>
mutate(
NatCoal = ACT + National,
LabGreen = Labour + Green,
LabGreenMaori = Labour + Green + `Te Pāti Māori`,
NatCoalMaori = NatCoal + `Te Pāti Māori`
)
}
list(
tar_target(
weekly_mu,
model2023_mcmc_model2023$draws('mu', format = 'draws_matrix')
),
tar_target(
sims_election_night,
weekly_mu[, 1:8 * 473] |> as_tibble() |> set_names(parties_ss) |>
select(all_of(sort(parties_ss))) |>
select(-Other)
),
tar_target(
sims_saturday,
weekly_mu[, 1:8 * 473 - 24] |> as_tibble() |> set_names(parties_ss) |>
select(all_of(sort(parties_ss))) |>
select(-Other)
),
tar_target(seats_election_night, simulate_seats(sims_election_night)),
tar_target(seats_saturday, simulate_seats(sims_saturday))
)
```
```{targets coalition-plot}
coalition_plot <- function(seats) {
seats |>
select(National,
Labour,
NatCoal,
LabGreen,
LabGreenMaori,
NatCoalMaori) |>
gather(Coalition, Seats) |>
mutate(lab_in = ifelse(grepl("^Lab", Coalition), "Labour-based", "Nationals-based")) |>
mutate(
Coalition = gsub("^LabGreen", "Labour, Greens", Coalition),
Coalition = gsub("^NatCoal", "National, ACT", Coalition),
Coalition = gsub("Maori", ",\nTe Pāti Māori", Coalition)
) |>
ggplot(aes(x = Seats, fill = lab_in)) +
geom_histogram(
alpha = 0.5,
binwidth = 1,
position = "identity",
colour = NA
) +
scale_y_continuous() +
scale_fill_manual(values = c('#d82c20', '#065BAA')) +
theme_clean() +
theme(
legend.position = 'none',
strip.background = element_rect(fill = '#121617'),
strip.text = element_text(colour = 'white'),
plot.background = element_blank()
) +
labs(y = NULL) +
annotate(
'segment',
x = 61,
xend = 61,
y = 0,
yend = Inf
)
}
list(
tar_target(election_night_plot, coalition_plot(seats_election_night)),
tar_target(saturday_plot, coalition_plot(seats_saturday)),
tar_file(election_night620, {
f <- "output/election_night620.svg"
ggsave(
f,
plot = election_night_plot +
facet_wrap(~ factor(
Coalition,
levels = c(
"Labour",
"National",
"Labour, Greens",
"National, ACT",
"Labour, Greens,\nTe Pāti Māori",
"National, ACT,\nTe Pāti Māori"
)
), ncol = 2),
dpi = 100,
width = 6.2,
height = 4
)
f
}),
tar_file(election_night375, {
f <- "output/election_night375.svg"
ggsave(
f,
plot = election_night_plot +
facet_wrap(~ Coalition,
ncol = 1),
dpi = 100,
width = 3.75,
height = 7
)
f
}),
tar_file(saturday620, {
f <- "output/saturday620.svg"
ggsave(
f,
plot = saturday_plot +
facet_wrap(~ factor(
Coalition,
levels = c(
"Labour",
"National",
"Labour, Greens",
"National, ACT",
"Labour, Greens,\nTe Pāti Māori",
"National, ACT,\nTe Pāti Māori"
)
), ncol = 2),
dpi = 100,
width = 6.2,
height = 4
)
f
}),
tar_file(saturday375, {
f <- "output/saturday375.svg"
ggsave(
f,
plot = saturday_plot +
facet_wrap(~ Coalition,
ncol = 1),
dpi = 100,
width = 3.75,
height = 7
)
f
})
)
```