-
Notifications
You must be signed in to change notification settings - Fork 27
/
Copy pathtrain.py
239 lines (193 loc) · 7.6 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
"""
Copyright (C) 2019 NVIDIA Corporation. All rights reserved.
Licensed under the NVIDIA Source Code License. See LICENSE.md at https://github.com/nv-tlabs/meta-sim.
Authors: Amlan Kar, Aayush Prakash, Ming-Yu Liu, Eric Cameracci, Justin Yuan, Matt Rusiniak, David Acuna, Antonio Torralba and Sanja Fidler
"""
import os
import torch
import torch.nn as nn
import torch.nn.functional as F
import random
import argparse
from tqdm import tqdm
import utils
import utils.io as io
from data.loaders import get_loader, get_scene_graph_loader
from models.tasknet import get_tasknet
from models.metasim import MetaSim
from models.layers.render import RenderLayer
from models.layers.mmd import MMDInception
class Trainer(object):
def __init__(self, opts):
self.opts = opts
self.device = opts['device']
# Logdir
self.logdir = os.path.join(opts['logdir'],
opts['exp_name'], opts['variant_name'])
io.makedirs(self.logdir)
# Set seeds
rn = utils.set_seeds(opts['seed'])
self.model = MetaSim(opts).to(self.device)
self.generator = self.model.generator
tasknet_class = get_tasknet(opts['dataset'])
self.tasknet = tasknet_class(opts['task']).to(
self.opts['task']['device'])
# Data
sgl = get_scene_graph_loader(opts['dataset'])
self.scene_graph_dataset = sgl(
self.generator,
self.opts['epoch_length'])
# Rendering layer
self.renderer = RenderLayer(self.generator,
self.device)
# MMD
self.mmd = MMDInception(device=self.device,
resize_input=self.opts['mmd_resize_input'],
include_image=False, dims=self.opts['mmd_dims'])
dl = get_loader(opts['dataset'])
self.target_dataset = dl(self.opts['task']['val_root'])
# In the paper, this is different
# than the data used to get task net acc.
# Keeping it the same here for simplicity to
# reduce memory overhead. To do this correctly,
# generate another copy of the target data
# and use it for MMD computation.
# Optimizer
self.optimizer = torch.optim.Adam(
self.model.parameters(),
lr = opts['optim']['lr'],
weight_decay = opts['optim']['weight_decay']
)
# LR scheduler
self.lr_sched = torch.optim.lr_scheduler.StepLR(
self.optimizer,
step_size = opts['optim']['lr_decay'],
gamma = opts['optim']['lr_decay_gamma']
)
def train_reconstruction(self):
loader = torch.utils.data.DataLoader(self.scene_graph_dataset,
opts['batch_size'], num_workers=0,
collate_fn=self.scene_graph_dataset.collate_fn)
for e in range(self.opts['reconstruction_epochs']):
for idx, (g, x, m, adj) in enumerate(loader):
# g: scene graph, x: encoded features, m : mutability mask, adj: adjacency matrix
x, m, adj = x.float().to(self.device), m.float().to(self.device),\
adj.float().to(self.device)
dec, dec_act = self.model(x, adj)
# no sampling here
cls_log_prob = F.log_softmax(dec[..., :self.model.num_classes], dim=-1)
cls_loss = -torch.mean(torch.sum(
cls_log_prob * x[..., :self.model.num_classes],
dim=-1))
cls_loss *= self.opts['weight']['class']
# negative log likelihood
cont_loss = F.mse_loss(dec_act[..., self.model.num_classes:],
x[..., self.model.num_classes:])
loss = cls_loss + cont_loss
if idx % 50 == 0:
print(f'[Reconstruction] Epoch{e:4d}, Batch{idx:4d}, '
f'Class Loss {cls_loss.item():0.5f}, Cont Loss '
f'{cont_loss.item():0.5f}')
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()
del(loader)
return
def train(self):
if self.opts['train_reconstruction']:
self.train_reconstruction()
if self.opts['freeze_encoder']:
self.model.freeze_encoder()
loader = torch.utils.data.DataLoader(self.scene_graph_dataset,
opts['batch_size'], num_workers=0,
collate_fn=self.scene_graph_dataset.collate_fn)
# baseline for moving average
baseline = 0.
alpha = self.opts['moving_avg_alpha']
for e in range(self.opts['max_epochs']):
# Set seeds for epoch
rn = utils.set_seeds(e)
with torch.no_grad():
# Generate this epoch's data for task net
i = 0
# datadir
out_dir = os.path.join(self.logdir, 'datagen')
io.makedirs(out_dir)
for idx, (g, x, m, adj) in tqdm(enumerate(loader), desc='Generating Data'):
x, adj = x.float().to(self.device), adj.float().to(self.device)
# no sampling here
dec, dec_act = self.model(x, adj)
f = dec_act.cpu().numpy()
m = m.cpu().numpy()
g = self.generator.update(g, f, m)
r = self.generator.render(g)
for k in range(len(g)):
img, lbl = r[k]
out_img = os.path.join(out_dir, f'{str(i).zfill(6)}.jpg')
out_lbl = os.path.join(out_dir, f'{str(i).zfill(6)}.json')
io.write_img(img, out_img)
io.write_json(lbl, out_lbl)
i+=1
# task accuracy
acc = self.tasknet.train_from_dir(out_dir)
# compute moving average
if e > 0:
baseline = alpha * acc + (1-alpha) * baseline
else:
# initialize baseline to acc
baseline = acc
# Reset seeds to get exact same outputs
rn2 = utils.set_seeds(e)
for i in range(len(rn)):
assert rn[i] == rn2[i], 'Random numbers generated are different'
# zero out gradients for first step
self.optimizer.zero_grad()
# Train dist matching and task loss
for idx, (g, x, m, adj) in enumerate(loader):
x, m, adj = (x.float().to(self.device), m.float().to(self.device),
adj.float().to(self.device))
dec, dec_act, log_probs = self.model(x, adj, m, sample=True)
# sample here
# get real images
im_real = torch.from_numpy(self.target_dataset.get_bunch_images(
self.opts['num_real_images'])).to(self.device)
# get fake images
im = self.renderer.render(g, dec_act, m)
# different from generator.render, this
# has a backward pass implemented and
# it calls the generator.render function in
# the forward pass
if self.opts['dataset'] == 'mnist':
# add channel dimension and repeat 3 times for MNIST
im = im.unsqueeze(1).repeat(1,3,1,1) / 255.
im_real = im_real.permute(0,3,1,2).repeat(1,3,1,1) / 255.
mmd = self.mmd(im_real, im) * self.opts['weight']['dist_mmd']
if self.opts['use_task_loss']:
task_loss = -1 * torch.mean((acc - baseline) * log_probs)
loss = mmd + task_loss # weighting is already done
loss.backward()
else:
mmd.backward()
self.optimizer.step()
self.optimizer.zero_grad()
if idx % self.opts['print_freq'] == 0:
print(f'[Dist] Step: {idx} MMD: {mmd.item()}')
if self.opts['use_task_loss']:
print(f'[Task] Reward: {acc}, Baseline: {baseline}')
# debug information
print(f'[Feat] Step: {idx} {dec_act[0, 2, 15:].tolist()} {x[0, 2, 15:].tolist()}')
# To debug, this index is the loc_x, loc_y, yaw of the
# digit in MNIST
if self.opts['use_task_loss']:
self.optimizer.step()
self.optimizer.zero_grad()
# LR scheduler step
self.lr_sched.step()
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--exp', required=True,
type=str)
opts = parser.parse_args()
opts = io.read_yaml(opts.exp)
trainer = Trainer(opts)
trainer.train()