-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathexamples.py
141 lines (111 loc) · 5.33 KB
/
examples.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
import cv2
from train import processFiles, trainSVM
from detector import Detector
# Replace these with the directories containing your
# positive and negative sample images, respectively.
pos_dir = "samples/vehicles"
neg_dir = "samples/non-vehicles"
# Replace this with the path to your test video file.
video_file = "videos/test_video.mp4"
def example1():
"""
Train a classifier and run it on a video using default settings
without saving any files to disk.
"""
# Extract HOG features from images in the sample directories and return
# results and parameters in a dict.
feature_data = processFiles(pos_dir, neg_dir, recurse=True,
hog_features=True)
# Train SVM and return the classifier and parameters in a dict.
# This function takes the dict from processFiles() as an input arg.
classifier_data = trainSVM(feature_data=feature_data)
# Instantiate a Detector object and load the dict from trainSVM().
detector = Detector().loadClassifier(classifier_data=classifier_data)
# Open a VideoCapture object for the video file.
cap = cv2.VideoCapture(video_file)
# Start the detector by supplying it with the VideoCapture object.
# At this point, the video will be displayed, with bounding boxes
# drawn around detected objects per the method detailed in README.md.
detector.detectVideo(video_capture=cap)
def example2():
"""
Extract features from sample images and save to pickle file.
Load sample data to train classifier, then save classifier to pickle file.
Run the classifier on a video by loading the classifier file, and write
the resulting detection video to an avi file.
"""
# Extract HOG features, color histogram features, and spatial features
# from sample images, then save the data to a pickle file. Note that if an
# output filepath isn't specified, a default timestamped filename will
# be generated.
feature_data_filename = "feature_data.pkl"
processFiles(pos_dir, neg_dir, recurse=True, hog_features=True,
hist_features=True, spatial_features=True, output_file=True,
output_filename=feature_data_filename)
# Load the pickle file produced by processFiles(), train the classifier,
# then save the classifier data to a pickle file.
classifier_data_filename = "classifier_data.pkl"
trainSVM(filepath=feature_data_filename, output_file=True,
output_filename=classifier_data_filename)
# Instantiate a detector and load the classifier pickle file.
detector = Detector().loadClassifier(filepath=classifier_data_filename)
# Open a VideoCapture object for the video file.
cap = cv2.VideoCapture(video_file)
# Run the detector and save the resulting video to an avi file.
detector.detectVideo(video_capture=cap, write=True)
def example3():
"""
Extract features, train the classifier, run the detector using a
variety of custom parameters.
"""
# Extract features. Do not save to disk.
feature_data = processFiles(pos_dir, neg_dir, recurse=True,
color_space="yuv", channels=[0, 2], hog_features=True,
hist_features=False, spatial_features=True, hog_lib="sk",
size=(128, 64), hog_bins=11, pix_per_cell=(16, 8),
cells_per_block=(2,2), block_norm="L2", transform_sqrt=False,
spatial_size=(64, 32))
# Train a classifier and save it to disk, then use the returned dict
# to instantiate and run a detector.
classifier_data = trainSVM(feature_data=feature_data, loss="squared_hinge",
penalty="l2", dual=False, fit_intercept=False, output_file=True,
output_filename="example_classifier.pkl")
detector = Detector(init_size=(128,64), x_overlap=0.75, y_step=0.02,
x_range=(0.2, 0.85), y_range=(0.4, 0.9), scale=1.8)
detector.loadClassifier(classifier_data=classifier_data)
cap = cv2.VideoCapture(video_file)
detector.detectVideo(video_capture=cap, num_frames=5, threshold=100,
min_bbox=(50,50), draw_heatmap=False)
def example4():
"""
Load an existing classifier and run it on a video with custom parameters.
"""
detector = Detector(init_size=(64,64), x_overlap=0.3, y_step=0.015,
x_range=(0.1, 0.9), scale=1.4)
detector.loadClassifier(filepath="example_classifier.pkl")
cap = cv2.VideoCapture(video_file)
detector.detectVideo(video_capture=cap, num_frames=20, threshold=180,
draw_heatmap_size=0.4)
def example5():
"""
Train a classifier and run on video using parameters that seemed to work
well for vehicle detection.
"""
feature_data = processFiles(pos_dir, neg_dir, recurse=True,
color_space="YCrCb", channels=[0, 1, 2], hog_features=True,
hist_features=True, spatial_features=True, hog_lib="cv",
size=(64,64), pix_per_cell=(8,8), cells_per_block=(2,2),
hog_bins=20, hist_bins=16, spatial_size=(20,20))
classifier_data = trainSVM(feature_data=feature_data, C=1000)
detector = Detector(init_size=(90,90), x_overlap=0.7, y_step=0.01,
x_range=(0.02, 0.98), y_range=(0.55, 0.89), scale=1.3)
detector.loadClassifier(classifier_data=classifier_data)
cap = cv2.VideoCapture(video_file)
detector.detectVideo(video_capture=cap, num_frames=9, threshold=120,
draw_heatmap_size=0.3)
if __name__ == "__main__":
#example1()
#example2()
#example3()
#example4()
example5()