-
Notifications
You must be signed in to change notification settings - Fork 1
/
SSE2NEON.h
384 lines (321 loc) · 14.7 KB
/
SSE2NEON.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
#ifndef SSE2NEON_H
#define SSE2NEON_H
// This header file provides a simple API translation layer
// between SSE intrinsics to their corresponding ARM NEON versions
//
// This header file does not (yet) translate *all* of the SSE intrinsics.
// Since this is in support of a specific porting effort, I have only
// included the intrinsics I needed to get my port to work.
//
// Questions/Comments/Feedback send to: [email protected]
//
// If you want to improve or add to this project, send me an
// email and I will probably approve your access to the depot.
//
// Project is located here:
//
// https://code.google.com/p/sse2neon/
//
// TipJar: 1PzgWDSyq4pmdAXRH8SPUtta4SWGrt4B1p
#include "arm_neon.h"
/*******************************************************/
/* MACRO for shuffle parameter for _mm_shuffle_ps(). */
/* Argument fp3 is a digit[0123] that represents the fp*/
/* from argument "b" of mm_shuffle_ps that will be */
/* placed in fp3 of result. fp2 is the same for fp2 in */
/* result. fp1 is a digit[0123] that represents the fp */
/* from argument "a" of mm_shuffle_ps that will be */
/* places in fp1 of result. fp0 is the same for fp0 of */
/* result */
/*******************************************************/
#define _MM_SHUFFLE(fp3,fp2,fp1,fp0) (((fp3) << 6) | ((fp2) << 4) | \
((fp1) << 2) | ((fp0)))
typedef float32x4_t __m128;
typedef int32x4_t __m128i;
// ******************************************
// Set/get methods
// ******************************************
// Sets the 128-bit value to zero https://msdn.microsoft.com/en-us/library/vstudio/ys7dw0kh(v=vs.100).aspx
inline __m128i _mm_setzero_si128 ()
{
return vdupq_n_s32(0);
}
// Clears the four single-precision, floating-point values. https://msdn.microsoft.com/en-us/library/vstudio/tk1t2tbz(v=vs.100).aspx
inline __m128 _mm_setzero_ps(void)
{
return vdupq_n_f32(0);
}
// Sets the four single-precision, floating-point values to w. https://msdn.microsoft.com/en-us/library/vstudio/2x1se8ha(v=vs.100).aspx
inline __m128 _mm_set1_ps(float _w)
{
return vdupq_n_f32(_w);
}
// Sets the four single-precision, floating-point values to the four inputs. https://msdn.microsoft.com/en-us/library/vstudio/afh0zf75(v=vs.100).aspx
inline __m128 _mm_set_ps(float w, float z , float y , float x )
{
float __attribute__ ((aligned (16))) data[4] = { x, y, z, w };
return vld1q_f32(data);
}
// Sets the 4 signed 32-bit integer values to i. https://msdn.microsoft.com/en-us/library/vstudio/h4xscxat(v=vs.100).aspx
inline __m128i _mm_set1_epi32 (int _i)
{
return vdupq_n_s32(_i);
}
// Sets the 4 signed 32-bit integer values. https://msdn.microsoft.com/en-us/library/vstudio/019beekt(v=vs.100).aspx
inline __m128i _mm_set_epi32 (int i3, int i2,int i1, int i0)
{
int32_t __attribute__ ((aligned (16))) data[4] = { i0, i1, i2, i3 };
return vld1q_s32(data);
}
// Stores four single-precision, floating-point values. https://msdn.microsoft.com/en-us/library/vstudio/s3h4ay6y(v=vs.100).aspx
inline void _mm_store_ps(float *p, __m128 a )
{
vst1q_f32(p,a);
}
// Loads a single single-precision, floating-point value, copying it into all four words https://msdn.microsoft.com/en-us/library/vstudio/5cdkf716(v=vs.100).aspx
inline __m128 _mm_load1_ps(const float * p )
{
return vld1q_dup_f32(p);
}
// Loads four single-precision, floating-point values. https://msdn.microsoft.com/en-us/library/vstudio/zzd50xxt(v=vs.100).aspx
inline __m128 _mm_load_ps(const float * p )
{
return vld1q_f32(p);
}
// ******************************************
// Logic/Binary operations
// ******************************************
// Computes the bitwise AND-NOT of the four single-precision, floating-point values of a and b. https://msdn.microsoft.com/en-us/library/vstudio/68h7wd02(v=vs.100).aspx
inline __m128 _mm_andnot_ps(__m128 a , __m128 b )
{
return (__m128)vbicq_s32((__m128i)b,(__m128i)a); // *NOTE* argument swap
}
// Computes the bitwise AND of the 128-bit value in b and the bitwise NOT of the 128-bit value in a. https://msdn.microsoft.com/en-us/library/vstudio/1beaceh8(v=vs.100).aspx
inline __m128i _mm_andnot_si128 (__m128i a, __m128i b)
{
return (__m128i)vbicq_s32(b,a); // *NOTE* argument swap
}
// Computes the bitwise AND of the 128-bit value in a and the 128-bit value in b. https://msdn.microsoft.com/en-us/library/vstudio/6d1txsa8(v=vs.100).aspx
inline __m128i _mm_and_si128 (__m128i a, __m128i b)
{
return (__m128i)vandq_s32(a,b);
}
// Computes the bitwise AND of the four single-precision, floating-point values of a and b. https://msdn.microsoft.com/en-us/library/vstudio/73ck1xc5(v=vs.100).aspx
inline __m128 _mm_and_ps(__m128 a , __m128 b )
{
return (__m128)vandq_s32((__m128i)a,(__m128i)b);
}
// Computes the bitwise OR of the four single-precision, floating-point values of a and b. https://msdn.microsoft.com/en-us/library/vstudio/7ctdsyy0(v=vs.100).aspx
inline __m128 _mm_or_ps(__m128 a , __m128 b )
{
return (__m128)vorrq_s32((__m128i)a,(__m128i)b);
}
//Computes the bitwise OR of the 128-bit value in a and the 128-bit value in b. https://msdn.microsoft.com/en-us/library/vstudio/ew8ty0db(v=vs.100).aspx
inline __m128i _mm_or_si128 (__m128i a, __m128i b)
{
return (__m128i)vorrq_s32(a,b);
}
// NEON does not provide this method
// Creates a 4-bit mask from the most significant bits of the four single-precision, floating-point values. https://msdn.microsoft.com/en-us/library/vstudio/4490ys29(v=vs.100).aspx
inline int _mm_movemask_ps( __m128 a )
{
#if 0 // I am not yet convinced that the NEON version is faster than the C version of this
uint32x4_t &ia = *(uint32x4_t *)&a;
return (ia[0]>>31) | ((ia[1]>>30)&2) | ((ia[2]>>29)&4) | ((ia[3]>>28)&8);
#else
static const uint32x4_t movemask = { 1, 2, 4, 8 };
static const uint32x4_t highbit = { 0x80000000, 0x80000000, 0x80000000, 0x80000000 };
uint32x4_t t0 = vreinterpretq_u32_f32(a);
uint32x4_t t1 = vtstq_u32(t0, highbit);
uint32x4_t t2 = vandq_u32(t1, movemask);
uint32x2_t t3 = vorr_u32(vget_low_u32(t2), vget_high_u32(t2));
return vget_lane_u32(t3, 0) | vget_lane_u32(t3, 1);
#endif
}
// NEON does not support a general purpose permute intrinsic
// Currently I am not sure whether the C implementation is faster or slower than the NEON version.
// Note, this has to be expanded as a template because the shuffle value must be an immediate value.
// The same is true on SSE as well.
// Selects four specific single-precision, floating-point values from a and b, based on the mask i. https://msdn.microsoft.com/en-us/library/vstudio/5f0858x0(v=vs.100).aspx
template <int i >
inline __m128 _mm_shuffle_ps_function(__m128 a , __m128 b)
{
#if 0 // I am not convinced that the NEON version is faster than the C version yet.
__m128 ret;
ret[0] = a[i&0x3];
ret[1] = a[(i>>2)&0x3];
ret[2] = b[(i>>4)&0x03];
ret[3] = b[(i>>6)&0x03];
return ret;
#else
__m128 ret = vmovq_n_f32(vgetq_lane_f32(a, i&0x3));
ret = vsetq_lane_f32(vgetq_lane_f32(a, (i>>2)&0x3), ret, 1);
ret = vsetq_lane_f32(vgetq_lane_f32(b, (i>>4)&0x3), ret, 2);
ret = vsetq_lane_f32(vgetq_lane_f32(b, (i>>6)&0x3), ret, 3);
return ret;
#endif
}
#define _mm_shuffle_ps(a,b,i) _mm_shuffle_ps_function<i>(a,b)
// Shifts the 4 signed or unsigned 32-bit integers in a left by count bits while shifting in zeros. : https://msdn.microsoft.com/en-us/library/z2k3bbtb%28v=vs.90%29.aspx
#define _mm_slli_epi32(a,b) (__m128i)vshlq_n_s32(a,b)
// NEON does not provide a version of this function, here is an article about some ways to repro the results.
// http://stackoverflow.com/questions/11870910/sse-mm-movemask-epi8-equivalent-method-for-arm-neon
// Creates a 16-bit mask from the most significant bits of the 16 signed or unsigned 8-bit integers in a and zero extends the upper bits. https://msdn.microsoft.com/en-us/library/vstudio/s090c8fk(v=vs.100).aspx
inline int _mm_movemask_epi8 (__m128i _a)
{
uint8x16_t input = (uint8x16_t)_a;
const int8_t __attribute__ ((aligned (16))) xr[8] = {-7,-6,-5,-4,-3,-2,-1,0};
uint8x8_t mask_and = vdup_n_u8(0x80);
int8x8_t mask_shift = vld1_s8(xr);
uint8x8_t lo = vget_low_u8(input);
uint8x8_t hi = vget_high_u8(input);
lo = vand_u8(lo, mask_and);
lo = vshl_u8(lo, mask_shift);
hi = vand_u8(hi, mask_and);
hi = vshl_u8(hi, mask_shift);
lo = vpadd_u8(lo,lo);
lo = vpadd_u8(lo,lo);
lo = vpadd_u8(lo,lo);
hi = vpadd_u8(hi,hi);
hi = vpadd_u8(hi,hi);
hi = vpadd_u8(hi,hi);
return ((hi[0] << 8) | (lo[0] & 0xFF));
}
// ******************************************
// Math operations
// ******************************************
// Subtracts the four single-precision, floating-point values of a and b. https://msdn.microsoft.com/en-us/library/vstudio/1zad2k61(v=vs.100).aspx
inline __m128 _mm_sub_ps(__m128 a , __m128 b )
{
return vsubq_f32(a,b);
}
// Subtracts the 4 signed or unsigned 32-bit integers of b from the 4 signed or unsigned 32-bit integers of a. https://msdn.microsoft.com/en-us/library/vstudio/fhh866h0(v=vs.100).aspx
inline __m128i _mm_sub_epi32 (__m128i a, __m128i b)
{
return vsubq_s32(a,b);
}
// Adds the four single-precision, floating-point values of a and b. https://msdn.microsoft.com/en-us/library/vstudio/c9848chc(v=vs.100).aspx
inline __m128 _mm_add_ps(__m128 a , __m128 b )
{
return vaddq_f32(a,b);
}
// Adds the 4 signed or unsigned 32-bit integers in a to the 4 signed or unsigned 32-bit integers in b. https://msdn.microsoft.com/en-us/library/vstudio/09xs4fkk(v=vs.100).aspx
inline __m128i _mm_add_epi32 (__m128i a, __m128i b)
{
return vaddq_s32(a,b);
}
// Multiplies the 8 signed or unsigned 16-bit integers from a by the 8 signed or unsigned 16-bit integers from b. https://msdn.microsoft.com/en-us/library/vstudio/9ks1472s(v=vs.100).aspx
inline __m128i _mm_mullo_epi16 (__m128i a, __m128i b)
{
return (__m128i)vmulq_s16((int16x8_t)a,(int16x8_t)b);
}
// Multiplies the four single-precision, floating-point values of a and b. https://msdn.microsoft.com/en-us/library/vstudio/22kbk6t9(v=vs.100).aspx
inline __m128 _mm_mul_ps(__m128 a , __m128 b )
{
return vmulq_f32(a,b);
}
// This version does additional iterations to improve accuracy. Between 1 and 4 recommended.
// Computes the approximations of reciprocals of the four single-precision, floating-point values of a. https://msdn.microsoft.com/en-us/library/vstudio/796k1tty(v=vs.100).aspx
inline __m128 recipq_newton(__m128 in,int n)
{
__m128 recip = vrecpeq_f32(in);
for(int i=0; i<n; ++i)
{
recip = vmulq_f32(recip, vrecpsq_f32(recip, in));
}
return recip;
}
// Computes the approximations of reciprocals of the four single-precision, floating-point values of a. https://msdn.microsoft.com/en-us/library/vstudio/796k1tty(v=vs.100).aspx
inline __m128 _mm_rcp_ps(__m128 in)
{
__m128 recip = vrecpeq_f32(in);
recip = vmulq_f32(recip, vrecpsq_f32(recip, in));
return recip;
}
// Computes the maximums of the four single-precision, floating-point values of a and b. https://msdn.microsoft.com/en-us/library/vstudio/ff5d607a(v=vs.100).aspx
inline __m128 _mm_max_ps(__m128 a , __m128 b )
{
return vmaxq_f32(a,b);
}
// Computes the minima of the four single-precision, floating-point values of a and b. https://msdn.microsoft.com/en-us/library/vstudio/wh13kadz(v=vs.100).aspx
inline __m128 _mm_min_ps(__m128 a , __m128 b )
{
return vminq_f32(a,b);
}
// Computes the pairwise minima of the 8 signed 16-bit integers from a and the 8 signed 16-bit integers from b. https://msdn.microsoft.com/en-us/library/vstudio/6te997ew(v=vs.100).aspx
inline __m128i _mm_min_epi16 (__m128i a, __m128i b)
{
return (__m128i)vminq_s16((int16x8_t)a,(int16x8_t)b);
}
// Multiplies the 8 signed 16-bit integers from a by the 8 signed 16-bit integers from b. https://msdn.microsoft.com/en-us/library/vstudio/59hddw1d(v=vs.100).aspx
inline __m128i _mm_mulhi_epi16 (__m128i a, __m128i b)
{
int16x8_t ret = vqdmulhq_s16((int16x8_t)a,(int16x8_t)b);
ret = vshrq_n_s16(ret,1);
return (__m128i)ret;
}
// ******************************************
// Compare operations
// ******************************************
// Compares for less than https://msdn.microsoft.com/en-us/library/vstudio/f330yhc8(v=vs.100).aspx
inline __m128 _mm_cmplt_ps(__m128 a, __m128 b )
{
return (__m128)vcltq_f32(a,b);
}
// Compares for greater than. https://msdn.microsoft.com/en-us/library/vstudio/11dy102s(v=vs.100).aspx
inline __m128 _mm_cmpgt_ps(__m128 a, __m128 b )
{
return (__m128)vcgtq_f32(a,b);
}
// Compares for greater than or equal. https://msdn.microsoft.com/en-us/library/vstudio/fs813y2t(v=vs.100).aspx
inline __m128 _mm_cmpge_ps(__m128 a, __m128 b )
{
return (__m128)vcgeq_f32(a,b);
}
// Compares for less than or equal. https://msdn.microsoft.com/en-us/library/vstudio/1s75w83z(v=vs.100).aspx
inline __m128 _mm_cmple_ps(__m128 a , __m128 b )
{
return (__m128)vcleq_f32(a,b);
}
// Compares for equality. https://msdn.microsoft.com/en-us/library/vstudio/36aectz5(v=vs.100).aspx
inline __m128 _mm_cmpeq_ps(__m128 a , __m128 b )
{
return (__m128)vceqq_f32(a,b);
}
// Compares the 4 signed 32-bit integers in a and the 4 signed 32-bit integers in b for less than. https://msdn.microsoft.com/en-us/library/vstudio/4ak0bf5d(v=vs.100).aspx
inline __m128i _mm_cmplt_epi32 (__m128i a, __m128i b)
{
return (__m128i)vcltq_s32(a,b);
}
// Compares the 4 signed 32-bit integers in a and the 4 signed 32-bit integers in b for greater than. https://msdn.microsoft.com/en-us/library/vstudio/1s9f2z0y(v=vs.100).aspx
inline __m128i _mm_cmpgt_epi32 (__m128i a, __m128i b)
{
return (__m128i)vcgtq_s32(a,b);
}
// ******************************************
// Conversions
// ******************************************
// Converts the four single-precision, floating-point values of a to signed 32-bit integer values using truncate. https://msdn.microsoft.com/en-us/library/vstudio/1h005y6x(v=vs.100).aspx
inline __m128i _mm_cvttps_epi32 (__m128 a)
{
return vcvtq_s32_f32(a);
}
// Converts the four signed 32-bit integer values of a to single-precision, floating-point values https://msdn.microsoft.com/en-us/library/vstudio/36bwxcx5(v=vs.100).aspx
inline __m128 _mm_cvtepi32_ps (__m128i a)
{
return vcvtq_f32_s32(a);
}
// Converts the four single-precision, floating-point values of a to signed 32-bit integer values. https://msdn.microsoft.com/en-us/library/vstudio/xdc42k5e(v=vs.100).aspx
inline __m128i _mm_cvtps_epi32 (__m128 a)
{
#if __aarch64__
return vcvtaq_s32_f32(a);
#else
__m128 half = vdupq_n_f32(0.5f);
const __m128 sign = vcvtq_f32_u32((vshrq_n_u32(vreinterpretq_u32_f32(a), 31)));
const __m128 aPlusHalf = vaddq_f32(a, half);
const __m128 aRound = vsubq_f32(aPlusHalf, sign);
return vcvtq_s32_f32(aRound);
#endif
}
#endif