-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcreate_hdf5.py
126 lines (119 loc) · 4.96 KB
/
create_hdf5.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
from random import shuffle
import glob
import cv2
import numpy as np
import h5py
IMG_SIZE = 150
shuffle_data = True # shuffle the addresses before saving
hdf5_path = '/media/Data/Datasets/RML/Extracted_Frames/dataset.hdf5' # address to where you want to save the hdf5 file
path = '/media/Data/Datasets/RML/Extracted_Frames/*/*/*/*.png'
# read addresses and labels from the 'train' folder
addrs = glob.glob(path)
addrs.sort(key=lambda f: int(filter(str.isdigit, f)))
labels = [0 if 'cat.' in addr else 1 for addr in addrs] # 0 = Cat, 1 = Dog
print(len(labels))
# to shuffle data
if shuffle_data:
c = list(zip(addrs, labels))
shuffle(c)
addrs, labels = zip(*c)
# Divide the hata into 60% train, 20% validation, and 20% test
train_addrs = addrs[0:int(0.8 * len(addrs))]
train_labels = labels[0:int(0.8 * len(labels))]
val_addrs = addrs[int(0.6 * len(addrs)):int(0.8 * len(addrs))]
val_labels = labels[int(0.6 * len(addrs)):int(0.8 * len(addrs))]
test_addrs = addrs[int(0.8 * len(addrs)):]
test_labels = labels[int(0.8 * len(labels)):]
data_order = 'tf' # 'th' for Theano, 'tf' for Tensorflow
# check the order of data and chose proper data shape to save images
if data_order == 'th':
train_shape = (len(train_addrs), 3, IMG_SIZE, IMG_SIZE)
val_shape = (len(val_addrs), 3, IMG_SIZE, IMG_SIZE)
test_shape = (len(test_addrs), 3, IMG_SIZE, IMG_SIZE)
elif data_order == 'tf':
train_shape = (len(train_addrs), IMG_SIZE, IMG_SIZE, 3)
val_shape = (len(val_addrs), IMG_SIZE, IMG_SIZE, 3)
test_shape = (len(test_addrs), IMG_SIZE, IMG_SIZE, 3)
# open a hdf5 file and create earrays
hdf5_file = h5py.File(hdf5_path, mode='w')
hdf5_file.create_dataset("train_img", train_shape, np.int8)
hdf5_file.create_dataset("val_img", val_shape, np.int8)
hdf5_file.create_dataset("test_img", test_shape, np.int8)
hdf5_file.create_dataset("train_mean", train_shape[1:], np.float32)
hdf5_file.create_dataset("train_labels", (len(train_addrs),), np.int8)
hdf5_file["train_labels"][...] = train_labels
hdf5_file.create_dataset("val_labels", (len(val_addrs),), np.int8)
hdf5_file["val_labels"][...] = val_labels
hdf5_file.create_dataset("test_labels", (len(test_addrs),), np.int8)
hdf5_file["test_labels"][...] = test_labels
# a numpy array to save the mean of the images
mean = np.zeros(train_shape[1:], np.float32)
# loop over train addresses
for i in range(len(train_addrs)):
# print how many images are saved every 1000 images
if i % 1000 == 0 and i > 1:
print 'Train data: {}/{}'.format(i, len(train_addrs))
# read an image and resize to (IMG_SIZE, IMG_SIZE)
# cv2 load images as BGR, convert it to RGB
addr = train_addrs[i]
img = cv2.imread(addr)
img = cv2.resize(img, (IMG_SIZE, IMG_SIZE), interpolation=cv2.INTER_CUBIC)
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
cv2.imwrite("test.png", img)
gray = np.zeros((IMG_SIZE, IMG_SIZE, 3))
gray[:, :, 0] = img
gray[:, :, 1] = img
gray[:, :, 2] = img
cv2.imwrite("test2.png", gray)
# add any image pre-processing here
# if the data order is Theano, axis orders should change
if data_order == 'th':
img = np.rollaxis(img, 2)
# save the image and calculate the mean so far
hdf5_file["train_img"][i, ...] = gray
# mean += gray / float(len(train_labels))
# loop over validation addresses
for i in range(len(val_addrs)):
# print how many images are saved every 1000 images
if i % 1000 == 0 and i > 1:
print 'Validation data: {}/{}'.format(i, len(val_addrs))
# read an image and resize to (IMG_SIZE, IMG_SIZE)
# cv2 load images as BGR, convert it to RGB
addr = val_addrs[i]
img = cv2.imread(addr)
img = cv2.resize(img, (IMG_SIZE, IMG_SIZE), interpolation=cv2.INTER_CUBIC)
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
gray = np.zeros((IMG_SIZE, IMG_SIZE, 3))
gray[:, :, 0] = img
gray[:, :, 1] = img
gray[:, :, 2] = img
# add any image pre-processing here
# if the data order is Theano, axis orders should change
if data_order == 'th':
img = np.rollaxis(img, 2)
# save the image
hdf5_file["val_img"][i, ...] = gray
# loop over test addresses
for i in range(len(test_addrs)):
# print how many images are saved every 1000 images
if i % 1000 == 0 and i > 1:
print 'Test data: {}/{}'.format(i, len(test_addrs))
# read an image and resize to (IMG_SIZE, IMG_SIZE)
# cv2 load images as RGB, convert it to Gray
addr = test_addrs[i]
img = cv2.imread(addr)
img = cv2.resize(img, (IMG_SIZE, IMG_SIZE), interpolation=cv2.INTER_CUBIC)
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
gray = np.zeros((IMG_SIZE, IMG_SIZE, 3))
gray[:, :, 0] = img
gray[:, :, 1] = img
gray[:, :, 2] = img
# add any image pre-processing here
# if the data order is Theano, axis orders should change
if data_order == 'th':
img = np.rollaxis(img, 2)
# save the image
hdf5_file["test_img"][i, ...] = gray
# save the mean and close the hdf5 file
hdf5_file["train_mean"][...] = mean
hdf5_file.close()