forked from cgorringe/ft-demos
-
Notifications
You must be signed in to change notification settings - Fork 0
/
fsa.py
80 lines (62 loc) · 2.45 KB
/
fsa.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
#! /usr/bin/env python
import numpy as np
import flaschen_np
import time
def fsa_line(in_line, one_patterns, pad_with = False):
'''Operates on bool array'''
#one_patterns_head = [op[0:2] for op in one_patterns]
#one_patterns_tail = [op[1:3] for op in one_patterns]
_in_line_padded = np.pad(in_line, 1, 'constant', constant_values=pad_with)
ret = np.zeros(in_line.shape[0], dtype='bool') # All false to start
if not isinstance(in_line, np.ndarray):
in_line = np.array(in_line)
if not isinstance(one_patterns, np.ndarray):
one_patterns = np.array(one_patterns)
if len(one_patterns.shape) == 1:
one_patterns = one_patterns[np.newaxis]
for pp in xrange(one_patterns.shape[0]):
conv = np.correlate(_in_line_padded.astype('int')*2-1,
one_patterns[pp].astype('int')*2-1,
'valid')
ret |= (conv >= 3)
return ret
def rand_color():
return np.random.randint(255, size=3, dtype='int')
class FlaschenFSA(object):
def __init__(self, ff, line0, one_patterns, color_0=[1, 1, 1], color_1=[0, 255, 0]):
self.ff = ff # flaschen
self.ff.zero()
self.line = line0.copy()
self.one_patterns = one_patterns
self.color_0 = color_0
self.color_1 = color_1
self._store_line()
def _store_line(self):
for jj in range(len(self.line)):
color_0 = rand_color() if self.color_0 == 'rand' else self.color_0
color_1 = rand_color() if self.color_1 == 'rand' else self.color_1
self.ff.data[0,jj] = color_1 if self.line[jj] else color_0
def step(self):
self.line = fsa_line(self.line, self.one_patterns)
self.ff.data[1:,:,:] = self.ff.data[:-1,:,:]
self._store_line()
def send(self):
self.ff.send()
def main():
'''Just run a quick hardcoded demo'''
ff = flaschen_np.FlaschenNP('ft.noise', 1337, 45, 35, 11)
line0 = np.zeros(ff.data.shape[1], dtype='bool')
line0[line0.shape[0]/2] = True
# Sierpinski
#patterns = [[False, False, True], [True, False, False]]
# Rule 30 chaos
patterns = [[True, False, False], [False, True, True], [False, True, False], [False, False, True]]
fs = FlaschenFSA(ff, line0, patterns)
for ii in xrange(100):
fs.step()
fs.send()
time.sleep(.05)
import IPython
IPython.embed()
if __name__ == '__main__':
main()