-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_t5.py
475 lines (437 loc) · 20.3 KB
/
run_t5.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
# coding=utf-8
from transformers import get_linear_schedule_with_warmup, T5Tokenizer, BartTokenizer, T5Config
from transformers import T5ForConditionalGeneration
from transformers import BartForConditionalGeneration
from tqdm import trange
import os
import random
from utils import save_dataset, set_seed, save_model, read_dataset
import json
import argparse
import time
from torch import nn
import copy
from tqdm import tqdm
from eval_script import multi_span_evaluate, get_entities
import ast
import numpy as np
import torch
device = torch.device("cuda:0")
class SpanQualifier(nn.Module):
def __init__(self, model_path):
super(SpanQualifier, self).__init__()
self.t5_model = ConditionalGeneration.from_pretrained(model_path)
# dim = self.t5_model.config.d_model
n_gpu = torch.cuda.device_count()
layer_num = self.t5_model.config.num_layers
layer_per_gpu = layer_num // n_gpu
layer_per_gpu_remainder = layer_num % n_gpu
device_map = {}
cur_layer = 0
for n in range(n_gpu):
device_map[n] = []
if n < layer_per_gpu_remainder:
layer_assigned = layer_per_gpu + 1
else:
layer_assigned = layer_per_gpu
for i in range(layer_assigned):
device_map[n].append(cur_layer)
cur_layer += 1
self.t5_model.parallelize(device_map)
def forward(self, input_ids, input_masks, labels=None):
if labels is not None:
t5_output = self.t5_model(input_ids=input_ids,
attention_mask=input_masks,
labels=labels,
return_dict=True)
loss = t5_output.loss
return loss
else:
enc_time_beg = time.time()
enc_time_end = time.time()
dec_time_beg = time.time()
t5_output = self.t5_model.generate(
input_ids=input_ids,
# encoder_outputs=ModelOutput(last_hidden_state=encoder_q),
max_length=100,
attention_mask=input_masks,
do_sample=False,
output_hidden_states=True,
return_dict_in_generate=True,
use_cache=False
)
output_sequences = t5_output.sequences
# score_list = t5_output.score_list
predicts = tokenizer.batch_decode(output_sequences, skip_special_tokens=True)
predicts = predicts[0].split(split_symbol)
dec_time_end = time.time()
return predicts, enc_time_end - enc_time_beg, dec_time_end - dec_time_beg
def get_input_feature(features, tokenizer, max_length):
input_list, target_list = [], []
for b_i, sample in enumerate(features):
question = sample['question']
if use_context:
context = sample['context']
input_list.append(f'Question: {question} Context: {context}')
else:
input_list.append(f'Question: {question}')
answers = copy.deepcopy(sample['answers'])
assert len(answers) > 0
answer = split_symbol.join(answers)
target_list.append(answer)
input_ids, input_masks = tokenizer_fun(input_list, max_length)
input_ids = torch.tensor(input_ids, dtype=torch.long).to(device)
input_masks = torch.tensor(input_masks, dtype=torch.long).to(device)
labels, _ = tokenizer_fun(target_list, max_length)
labels = [
[label if label != tokenizer.pad_token_id else -100 for label in labels_example] for labels_example in
labels
]
labels = torch.tensor(np.asarray(labels), dtype=torch.long).to(device)
return input_ids, input_masks, labels
def tokenizer_fun(input_ids, max_len):
encoding = tokenizer(input_ids,
padding='longest',
max_length=max_len,
truncation=True)
ids = encoding.input_ids
mask = encoding.attention_mask
return ids, mask
@torch.no_grad()
def evaluate(model, test_examples, eval_batch_size, tokenizer, max_len):
model.eval()
step_count = len(test_examples) // eval_batch_size
if step_count * eval_batch_size < len(test_examples):
step_count += 1
preds = {}
golds = {}
dataset_gold = []
time_all_enc, time_all_dec = 0, 0
time_all = 0
assert eval_batch_size == 1
for sample in tqdm(test_examples):
input_ids, input_masks, _ = get_input_feature([sample], tokenizer, max_len)
beg = time.time()
spans_predicts, enc_time, dec_time = model(input_ids, input_masks)
# print(spans_predicts)
if use_context:
context = sample['context']
spans_predicts_new = []
for spans_predict in spans_predicts:
if spans_predict.lower().strip() in context.lower():
spans_predicts_new.append(spans_predict)
if len(spans_predicts_new) != 0:
spans_predicts = spans_predicts_new
spans_predicts = list(set(spans_predicts))
end = time.time()
time_all += (end-beg)
time_all_enc += enc_time
time_all_dec += dec_time
id = sample['id']
answers = sample['answers']
preds[id] = spans_predicts
sample['pred'] = spans_predicts
golds[id] = answers
dataset_gold.append({
'id': id,
'question': sample['question'],
'answers': answers,
'pred': spans_predicts
})
print('enc avg:', round(time_all_enc * 100 / len(test_examples), 2))
print('dec avg:', round(time_all_dec * 100 / len(test_examples), 2))
print('time_all:', round(time_all * 100 / len(test_examples), 2))
print('Throughout:', round(len(test_examples) / time_all, 2))
scores = evaluate_fun(copy.deepcopy(preds), copy.deepcopy(golds), brief=True)
return scores, preds, dataset_gold
def read_msqa(path):
dataset_init = read_dataset(path)
dataset = []
for sample in dataset_init:
if 'label' not in sample:
dataset = dataset_init
break
id = sample['id']
question = sample['question']
context = sample['context']
label = sample['label']
answers = get_entities(label, context)
answers = [answer[0] for answer in answers]
assert len(answers) >= 2
dataset.append(
{
'id': id,
'context': ' '.join(context),
'question': ' '.join(question),
'answers': answers
}
)
return dataset
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument("--model_name",
default='t5-base',
type=str)
parser.add_argument("--sample_negative",
default=False,
type=ast.literal_eval)
parser.add_argument("--debug",
default=False,
type=ast.literal_eval)
parser.add_argument("--only_eval",
default=False,
type=ast.literal_eval)
parser.add_argument("--only_eval_train",
default=False,
type=ast.literal_eval)
parser.add_argument("--gpu",
default="1",
type=str)
parser.add_argument("--dataset_name",
default='MultiSpanQA',
type=str)
parser.add_argument("--dataset_split",
default='in_house',
# default='official',
type=str)
parser.add_argument("--train_batch_size",
default=24,
type=int,
help="Total batch size for training.")
parser.add_argument("--eval_batch_size",
default=1,
type=int,
help="Total batch size for eval.")
parser.add_argument('--ga',
type=int,
default=4,
help="Number of updates steps to accumulate before performing a backward/update pass.")
parser.add_argument("--results_save_path",
default='results',
type=str)
parser.add_argument("--output_dir",
default='outputs',
type=str,
help="The output dreader2ctory whretriever the model checkpoints will be written.")
parser.add_argument("--init",
default=False,
type=ast.literal_eval)
parser.add_argument("--init_checkpoint",
default=None,
type=ast.literal_eval)
parser.add_argument("--use_context",
default=True,
type=ast.literal_eval)
parser.add_argument("--save_model",
default=True,
type=ast.literal_eval)
parser.add_argument("--max_len",
default=512,
type=int)
parser.add_argument("--lr",
default=1e-4,
type=float,
help="The initial learning rate for Adam.")
parser.add_argument("--epoch_num",
default=20,
type=int,
help="Total number of training epochs to perform.")
parser.add_argument("--acc_epoch",
default=-1,
type=int,
help="Total number of training epochs to perform.")
parser.add_argument('--seed',
type=int,
default=0,
help="random seed for initialization")
args = parser.parse_args()
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu
split_symbol = ' # '
only_eval = args.only_eval
only_eval_train = args.only_eval_train
debug = args.debug
save_model_flag = args.save_model
model_name = args.model_name
use_context = args.use_context
if 'bart' in model_name:
Tokenizer = BartTokenizer
ConditionalGeneration = BartForConditionalGeneration
else:
ConditionalGeneration = T5ForConditionalGeneration
Tokenizer = T5Tokenizer
evaluate_fun = multi_span_evaluate
dataset_name = args.dataset_name
read_dataset_fun = read_dataset
read_dataset_fun = read_msqa
data_path_base = f'./data/in_house/{args.dataset_name}/'
data_path_train = f'{data_path_base}/train.json'
data_path_valid = f'{data_path_base}/valid.json'
data_path_test = f'{data_path_base}/test.json'
if args.model_name.endswith('/'):
args.model_name = args.model_name[:-1]
model_name_abb = args.model_name.split('/')[-1]
if use_context:
config_name = f'{args.dataset_name}/Sequence_context/{model_name_abb}'
else:
config_name = f'{args.dataset_name}/Sequence/{model_name_abb}/'
parameter_name = f'lr_{args.lr}_seed_{args.seed}_bs_{args.train_batch_size}' \
f'_ga_{args.ga}'
output_model_path = f'./{args.output_dir}/{config_name}/{parameter_name}/'
path_save_result = f'./{args.results_save_path}/{config_name}/{parameter_name}/'
os.makedirs(path_save_result, exist_ok=True)
set_seed(args.seed)
if debug:
train_examples = read_dataset_fun(data_path_train)[:10]
dev_examples = read_dataset_fun(data_path_valid)[:10]
test_examples = read_dataset_fun(data_path_test)[:10]
else:
train_examples = read_dataset_fun(data_path_train)
dev_examples = read_dataset_fun(data_path_valid)
test_examples = read_dataset_fun(data_path_test)
train_batch_size = args.train_batch_size // args.ga
tokenizer = Tokenizer.from_pretrained(args.model_name)
model = SpanQualifier(args.model_name)#.to(device)
vocab_size = model.t5_model.config.vocab_size
print(json.dumps({"lr": args.lr, "model": args.model_name, "seed": args.seed,
"bs": args.train_batch_size,
'ga': args.ga,
'init': args.init,
"epoch": args.epoch_num,
'save_model':save_model_flag,
"train_path": data_path_train,
"dev_path": data_path_valid,
"test_path": data_path_test,
"train_size": len(train_examples),
"train_examples": len(train_examples),
"dev_size": len(dev_examples),
"test_size": len(test_examples),
'max_len': args.max_len,
'output_model_path': output_model_path,
'use_context': use_context,
'path_save_result': path_save_result,
'init_checkpoint': args.init_checkpoint}, indent=2))
print('# parameters:', sum(param.numel() for param in model.parameters()))
if only_eval or only_eval_train:
args.init = True
if args.init and args.init_checkpoint is None:
init_checkpoint = f'{output_model_path}/pytorch_model.bin'
checkpoint = torch.load(init_checkpoint, map_location='cpu')
model_dict = checkpoint['model_state_dict']
model.load_state_dict(model_dict, False)
print('init from:', init_checkpoint)
elif args.init_checkpoint is not None:
init_checkpoint = args.init_checkpoint
checkpoint = torch.load(init_checkpoint, map_location='cpu')
model_dict = checkpoint['model_state_dict']
model.load_state_dict(model_dict, False)
print('init from:', args.init_checkpoint)
if only_eval_train:
scores, results_train, readable_results_train = evaluate(model, train_examples, args.eval_batch_size, tokenizer, args.max_len)
print(f'train:', scores)
save_dataset(data_path_base, 'train_pred.json', train_examples)
exit(0)
if only_eval:
scores, results_valid, readable_results_valid = evaluate(model, dev_examples, args.eval_batch_size, tokenizer,
args.max_len)
print('dev:', scores)
save_dataset(path_save_result, '/valid.json', results_valid)
save_dataset(path_save_result, '/readable_valid.json', readable_results_valid)
scores, results_test, readable_results_test = evaluate(model, test_examples, args.eval_batch_size, tokenizer,
args.max_len)
print('test:', scores)
save_dataset(path_save_result, '/test.json', results_test)
save_dataset(path_save_result, '/readable_test.json', readable_results_test)
exit(0)
warm_up_ratio = 0.05
optimizer = torch.optim.AdamW(model.parameters(), lr=args.lr, weight_decay=0.01)
t_total = args.epoch_num * (len(train_examples) // train_batch_size)
scheduler = get_linear_schedule_with_warmup(optimizer=optimizer,
# num_warmup_steps=int(warm_up_ratio * (t_total)),
num_warmup_steps=1000,
num_training_steps=t_total)
step_count, step_all, early_stop = 0, 0, 0
best_dev_rouge_score, best_test_rouge_score = 0, 0
best_test_acc = 0
best_dev_acc = 0
best_dev_result, best_test_result = None, None
if args.init_checkpoint is not None:
scores_valid, results_valid, readable_results_valid = evaluate(model, dev_examples, args.eval_batch_size, tokenizer,
args.max_len)
scores = sum([scores_valid[key] for key in scores_valid.keys()])
print('scores_dev:', scores_valid)
best_dev_acc = scores
for epoch in range(args.epoch_num):
tr_loss, nb_tr_steps = 0, 0.1
early_stop += 1
order = list(range(len(train_examples)))
random.seed(args.seed + epoch)
random.shuffle(order)
model.train()
step_count = len(train_examples) // train_batch_size
if step_count * train_batch_size < len(train_examples):
step_count += 1
step_trange = trange(step_count)
for step in step_trange:
step_all += 1
beg_index = step * train_batch_size
end_index = min((step + 1) * train_batch_size, len(train_examples))
order_index = order[beg_index:end_index]
batch_example = [train_examples[index] for index in order_index]
input_ids, input_masks, labels = get_input_feature(batch_example, tokenizer, args.max_len)
# beg = time.time()
loss = model(input_ids, input_masks, labels)
# end = time.time()
# print(end - beg)
loss = loss.mean()
tr_loss += loss.item()
nb_tr_steps += 1
loss = loss / args.ga
loss.backward()
if (step + 1) % args.ga == 0:
optimizer.step()
scheduler.step()
optimizer.zero_grad()
loss_show = ' Epoch:' + str(epoch) + " loss:" + str(
round(tr_loss / nb_tr_steps, 4)) + f" lr:{'%.2E' % scheduler.get_last_lr()[0]}"
step_trange.set_postfix_str(loss_show)
# if epoch >= 16:
if epoch >= args.acc_epoch:
scores_valid, results_valid, readable_results_valid = evaluate(model, dev_examples, args.eval_batch_size, tokenizer,
args.max_len)
print('dev:', scores_valid)
scores = sum([scores_valid[key] for key in scores_valid.keys()])
if scores > best_dev_acc:
best_dev_acc = scores
print('save new best')
if save_model_flag:
save_model(output_model_path, model, optimizer)
else:
save_dataset(path_save_result, '/valid.json', results_valid)
save_dataset(path_save_result, '/readable_valid.json', readable_results_valid)
scores_test, results_test, readable_results_test = evaluate(model, test_examples, args.eval_batch_size,
tokenizer,
args.max_len)
print('test:', scores_test)
save_dataset(path_save_result, '/test.json', results_test)
save_dataset(path_save_result, '/readable_test.json', readable_results_test)
print('best_dev_result:', best_dev_result)
print('best_test_result:', best_test_result)
print(path_save_result)
###############################
if save_model_flag:
init_checkpoint = f'{output_model_path}/pytorch_model.bin'
checkpoint = torch.load(init_checkpoint, map_location='cpu')
model_dict = checkpoint['model_state_dict']
model.load_state_dict(model_dict, False)
print('init from:', init_checkpoint)
scores, results_valid, readable_results_valid = evaluate(model, dev_examples, args.eval_batch_size, tokenizer,
args.max_len)
print('dev:', scores)
save_dataset(path_save_result, '/valid.json', results_valid)
save_dataset(path_save_result, '/readable_valid.json', readable_results_valid)
scores, results_test, readable_resultas_test = evaluate(model, test_examples, args.eval_batch_size, tokenizer,
args.max_len)
print('test:', scores)
save_dataset(path_save_result, '/test.json', results_test)
save_dataset(path_save_result, '/readable_test.json', readable_results_test)