-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_SpanQualifier.py
779 lines (699 loc) · 34 KB
/
run_SpanQualifier.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
# coding=utf-8
from transformers import AutoTokenizer, BertTokenizerFast, AlbertTokenizerFast, DebertaTokenizerFast, AutoModel, get_linear_schedule_with_warmup
from tqdm import trange
import os
import random
import torch
from utils import save_dataset, read_msqa, read_quoref, set_seed, save_model, split_sequence
import json
import argparse
from torch import nn
import math
from collections import OrderedDict
from eval_script import multi_span_evaluate
import copy
import ast
device = torch.device("cuda:0")
class MLP(nn.Module):
def __init__(self, dim0, dim1):
super(MLP, self).__init__()
self.linear1 = nn.Linear(dim0, dim0)
self.linear2 = nn.Linear(dim0, dim1)
self.activate = nn.ReLU()
def forward(self, input):
input = self.linear1(input)
input = self.activate(input)
input = self.linear2(input)
return input
class BoundaryEnumeration(nn.Module):
def __init__(self, dim):
super(BoundaryEnumeration, self).__init__()
self.s_boundary_enum = MLP(dim, dim)
self.e_boundary_enum = MLP(dim, dim)
def forward(self, H_c):
B_s = self.s_boundary_enum(H_c)
B_e = self.e_boundary_enum(H_c)
return B_s, B_e
class BoundaryRepresentation(nn.Module):
def __init__(self, dim1, dim2, max_len, max_span_gap, vanilla=False):
super(BoundaryRepresentation, self).__init__()
self.boundary_enum = BoundaryEnumeration(dim1)
self.vanilla = vanilla
self.boundary_aggregation = BoundaryAggregation(dim1, dim2, max_len, max_span_gap)
def forward(self, H_c, H_cls, masks):
B_s, B_e = self.boundary_enum(H_c)
G_s, G_e, qs_s, qs_e = None, None, None, None
if self.vanilla is False :
B_s, B_e, G_s, G_e, qs_s, qs_e = self.boundary_aggregation(B_s, B_e, H_cls, masks)
return B_s, B_e, G_s, G_e, qs_s, qs_e
class SpanEnumeration(nn.Module):
def __init__(self, dim1, dim2, max_len):
super(SpanEnumeration, self).__init__()
self.s_mapping = nn.Linear(dim1, dim2)
self.e_mapping = nn.Linear(dim1, dim2)
self.pos_embedding = nn.Embedding(max_len, dim2)
self.layer_norm = nn.LayerNorm(dim2, eps=1e-12)
pos_id = []
for i in range(max_len):
for j in range(max_len):
pos_id.append(int(math.fabs(j - i)))
self.pos_id = torch.tensor(pos_id, dtype=torch.long).to(device)
self.dim2 = dim2
self.max_len = max_len
def forward(self, B_s, B_e):
bs, seq_len, dim = B_s.size()
pos_embedding = self.pos_embedding(self.pos_id).view(self.max_len, self.max_len, self.dim2)
pos_embedding = pos_embedding[:seq_len, :seq_len, :]
pos_embedding = pos_embedding.reshape(seq_len, seq_len, self.dim2)
pos_embedding = pos_embedding.unsqueeze(dim=0).expand(bs, seq_len, seq_len, self.dim2)
B_s = self.s_mapping(B_s)
B_e = self.s_mapping(B_e)
B_s_ex = B_s.unsqueeze(dim=2).expand([bs, seq_len, seq_len, self.dim2])
B_e_ex = B_e.unsqueeze(dim=2).expand([bs, seq_len, seq_len, self.dim2])
B_e_ex = torch.transpose(B_e_ex, dim0=1, dim1=2)
N = B_s_ex + B_e_ex + pos_embedding
M = self.layer_norm(N)
return M
class SpanRepresentation(nn.Module):
def __init__(self, dim1, dim2, max_len, vanilla=False):
super(SpanRepresentation, self).__init__()
self.span_enum = SpanEnumeration(dim1, dim2, max_len)
self.span_interaction = SpanInteraction(dim2)
self.vanilla = vanilla
masks_triangle = []
for i in range(args.max_len):
for j in range(args.max_len):
if i <= j and j - i <= max_span_gap:
masks_triangle.append(1)
else:
masks_triangle.append(0)
self.masks_triangle = torch.tensor(masks_triangle, dtype=torch.float).to(device).view(args.max_len,
args.max_len)
def forward(self, B_s, B_e, masks):
M = self.span_enum(B_s, B_e)
bs, seq_len, dim = B_s.size()
masks_c_ex = masks.unsqueeze(dim=1).expand(bs, seq_len, seq_len)
masks_c_ex_t = torch.transpose(masks_c_ex, dim0=1, dim1=2)
masks_c_ex = masks_c_ex * masks_c_ex_t
masks_triangle = self.masks_triangle
masks_triangle = masks_triangle[:seq_len, :seq_len]
masks_triangle = masks_triangle.view(seq_len, seq_len)
masks_triangle = masks_triangle.unsqueeze(dim=0).expand(bs, seq_len, seq_len)
masks_triangle = masks_triangle.clone()
masks_matrix = masks_c_ex * masks_triangle
M = M * masks_matrix.unsqueeze(dim=3)
if self.vanilla is False:
M = self.span_interaction(M)
return M
class SpanScoring(nn.Module):
def __init__(self, dim1, dim2, max_span_gap):
super(SpanScoring, self).__init__()
self.mlp_scoring = MLP(dim2, 1)
self.mlp_cls = MLP(dim1, 1)
masks_triangle = []
for i in range(args.max_len):
for j in range(args.max_len):
if i <= j and j - i <= max_span_gap:
masks_triangle.append(1)
else:
masks_triangle.append(0)
self.masks_triangle = torch.tensor(masks_triangle, dtype=torch.float).to(device).view(args.max_len,
args.max_len)
def forward(self, M, H_cls, masks):
S = self.mlp_scoring(M)
qs = self.mlp_cls(H_cls)
bs, seq_len, seq_len, dim = M.size()
S = S.view(bs, seq_len, seq_len)
masks_ex = masks.unsqueeze(dim=1).expand(bs, seq_len, seq_len)
masks_ex_t = torch.transpose(masks_ex, dim0=1, dim1=2)
masks_ex = masks_ex * masks_ex_t
masks_triangle = self.masks_triangle
masks_triangle = masks_triangle[:seq_len, :seq_len]
masks_triangle = masks_triangle.view(seq_len, seq_len)
masks_triangle = masks_triangle.unsqueeze(dim=0).expand(bs, seq_len, seq_len)
masks_triangle = masks_triangle.clone()
masks_matrix = masks_ex * masks_triangle
S = S - 10000.0 * (1 - masks_matrix)
return S, qs
class BoundaryAggregation(nn.Module):
def __init__(self, dim1, dim2, max_len, max_span_gap):
super(BoundaryAggregation, self).__init__()
self.span_enum_s = SpanEnumeration(dim1, dim2, max_len)
self.span_enum_e = SpanEnumeration(dim1, dim2, max_len)
self.span_scoring_s = SpanScoring(dim1, dim2, max_span_gap)
self.span_scoring_e = SpanScoring(dim1, dim2, max_span_gap)
self.W2_s = nn.Linear(dim1, dim1)
self.W2_e = nn.Linear(dim1, dim1)
self.span_interaction_s = SpanInteraction(dim2)
self.span_interaction_e = SpanInteraction(dim2)
def forward(self, hB_s, hB_e, H_cls, masks):
bs, seq_len, dim = hB_s.size()
M_s = self.span_enum_s(hB_s, hB_e)
M_s = self.span_interaction_s(M_s)
G_s, qs_s = self.span_scoring_s(M_s, H_cls, masks)
G_s_soft = torch.softmax(G_s, dim=-1)
B_s = torch.matmul(G_s_soft, self.W2_s(hB_s))
B_s = B_s.view(bs, seq_len, dim)
M_e = self.span_enum_e(hB_s, hB_e)
M_e = self.span_interaction_e(M_e)
G_e, qs_e = self.span_scoring_e(M_e, H_cls, masks)
G_e_soft = torch.softmax(torch.transpose(G_e, dim0=-2, dim1=-1), dim=-1)
B_e = torch.matmul(G_e_soft, self.W2_e(hB_e))
B_e = B_e.view(bs, seq_len, dim)
return B_s, B_e, G_s, G_e, qs_s, qs_e
class SpanInteraction(nn.Module):
def __init__(self, dim2):
super(SpanInteraction, self).__init__()
self.conv = nn.Conv2d(in_channels=dim2,
out_channels=dim2,
kernel_size=(5, 5),
padding=(2, 2))
def forward(self, hM):
hM = hM.permute(0, 3, 1, 2)
hM = self.conv(hM)
M = hM.permute(0, 2, 3, 1)
return M
class SpanQualifier(nn.Module):
def __init__(self, model_path, max_span_gap, dim2, max_len, vanilla=False):
super(SpanQualifier, self).__init__()
self.token_representation = AutoModel.from_pretrained(model_path)
dim1 = self.token_representation.config.hidden_size
self.boundary_representation = BoundaryRepresentation(dim1, dim2, max_len, max_span_gap, vanilla)
self.span_representation = SpanRepresentation(dim1, dim2, max_len, vanilla)
self.span_scoring = SpanScoring(dim1, dim2, max_span_gap)
self.vanilla = vanilla
def forward(self, input_ids, type_ids, mask_ids, context_ranges, targets=None):
outputs = self.token_representation(input_ids=input_ids,
attention_mask=mask_ids,
token_type_ids=type_ids,
output_hidden_states=True,
return_dict=True)
sequence_output = outputs.hidden_states[-1]
H_cls = sequence_output[:, 0, :].reshape(-1, sequence_output.size(-1))
H_c, masks = split_sequence(sequence_output, context_ranges, useSep=False)
B_s, B_e, G_s, G_e, qs_s, qs_e = self.boundary_representation(H_c, H_cls, masks)
M = self.span_representation(B_s, B_e, masks)
S, qs_ext = self.span_scoring(M, H_cls, masks)
if targets is not None:
loss, labels_batch = self.extract_loss(S, targets, qs_ext)
if self.vanilla is False:
loss += self.attention_loss_start(G_s, targets, qs_s)
loss += self.attention_loss_end(G_e, targets, qs_e)
loss = loss / 3
return loss
else:
spans, spans_matrix = self.decoding_span_matrix(S, qs_ext)
return spans
def decoding_span_matrix(self, logits_matrix, threhold_p, spans_matrix_mask=None):
bs, seq_len, seq_len = logits_matrix.size()
if spans_matrix_mask is not None:
logits_matrix = logits_matrix - 10000.0 * spans_matrix_mask
logits_end = torch.softmax(logits_matrix, dim=2)
_, idx_best_end = torch.max(logits_end, dim=2)
idx_best_end = idx_best_end.cpu().tolist()
threhold_p = threhold_p.view(bs)
threhold_p = threhold_p.cpu().tolist()
logits_beg = torch.softmax(logits_matrix, dim=1)
_, idx_best_beg = torch.max(logits_beg, dim=1)
idx_best_beg = idx_best_beg.cpu().tolist()
logits_matrix = logits_matrix.cpu().tolist()
spans = []
spans_matrix = []
for b_i, (matrix, t_p) in enumerate(zip(logits_matrix, threhold_p)):
spans_item = []
max_logit, max_i, max_j = -10000, 0, 0
spans_matrix_item = [[0] * seq_len for i in range(seq_len)]
for i, logits in enumerate(matrix):
for j, logit in enumerate(logits):
if i <= j and idx_best_end[b_i][i] == j and idx_best_beg[b_i][j] == i:
if logit > t_p:
spans_item.append([i, j])
spans_matrix_item[i][j] = 1
if logit > max_logit:
max_logit = logit
max_i, max_j = i, j
if len(spans_item) == 0 and force_answer:
spans_item.append([max_i, max_j])
spans.append(spans_item)
spans_matrix.append(spans_matrix_item)
spans_matrix = torch.tensor(spans_matrix, dtype=torch.float).to(device)
return spans, spans_matrix
def attention_loss_end(self, logits, span_targets, qs):
bs, seq_len, seq_len = logits.size()
qs = qs.view(-1)
labels_batch = []
has_answers = []
loss = []
global_has_answer = False
for spans in span_targets:
label_matrix = [[0] * seq_len for i in range(seq_len)]
has_answer = 0
for (beg, end) in spans:
for j in range(beg, end + 1):
# label_matrix[beg][j] = 1
label_matrix[j][end] = 1
has_answer = 1
global_has_answer = True
has_answers.append(has_answer)
labels_batch.append(label_matrix)
labels_batch = torch.tensor(labels_batch, dtype=torch.float).to(device)
has_answers = torch.tensor(has_answers, dtype=torch.float).to(device)
has_answers_idx = has_answers > 0
neg_span = logits * (1 - labels_batch)
neg_span_max, _ = torch.max(neg_span, dim=2)
neg_span_max, _ = torch.max(neg_span_max, dim=1)
loss_margin_neg = torch.clamp_min(1 - (qs - neg_span_max), 0)
loss_margin_neg = torch.mean(loss_margin_neg, dim=0)
loss.append(loss_margin_neg)
if global_has_answer is False:
return loss_margin_neg
pos_span = 0 - logits * labels_batch
pos_span = pos_span - 10000.0 * (1 - labels_batch)
pos_span_min, _ = torch.max(pos_span, dim=2)
pos_span_min, _ = torch.max(pos_span_min, dim=1)
pos_span_min = 0 - pos_span_min
loss_margin_pos = torch.clamp_min(1 - (pos_span_min - qs), 0)
loss_margin_pos = torch.mean(loss_margin_pos[has_answers_idx])
loss.append(loss_margin_pos)
logits = logits.view(-1, seq_len * seq_len)
labels_batch = labels_batch.view(-1, seq_len * seq_len)
logits_soft = torch.softmax(logits, dim=1)
loss_flat = torch.sum(logits_soft * labels_batch, dim=1)
loss_flat = -torch.log(torch.clamp(loss_flat, 0.0001, 1))
loss_flat = torch.mean(loss_flat[has_answers_idx], dim=0)
loss.append(loss_flat)
return sum(loss) / len(loss)
def attention_loss_start(self, logits, span_targets, qs):
bs, seq_len, seq_len = logits.size()
qs = qs.view(-1)
labels_batch = []
has_answers = []
loss = []
global_has_answer = False
for spans in span_targets:
label_matrix = [[0] * seq_len for i in range(seq_len)]
has_answer = 0
for (beg, end) in spans:
for j in range(beg, end+1):
label_matrix[beg][j] = 1
# label_matrix[j][end-1] = 1
has_answer = 1
global_has_answer = True
has_answers.append(has_answer)
labels_batch.append(label_matrix)
labels_batch = torch.tensor(labels_batch, dtype=torch.float).to(device)
has_answers = torch.tensor(has_answers, dtype=torch.float).to(device)
has_answers_idx = has_answers > 0
neg_span = logits * (1 - labels_batch)
neg_span_max, _ = torch.max(neg_span, dim=2)
neg_span_max, _ = torch.max(neg_span_max, dim=1)
loss_margin_neg = torch.clamp_min(1 - (qs - neg_span_max), 0)
loss_margin_neg = torch.mean(loss_margin_neg, dim=0)
loss.append(loss_margin_neg)
if global_has_answer is False:
return loss_margin_neg
pos_span = 0 - logits * labels_batch
pos_span = pos_span - 10000.0 * (1 - labels_batch)
pos_span_min, _ = torch.max(pos_span, dim=2)
pos_span_min, _ = torch.max(pos_span_min, dim=1)
pos_span_min = 0 - pos_span_min
loss_margin_pos = torch.clamp_min(1 - (pos_span_min - qs), 0)
loss_margin_pos = torch.mean(loss_margin_pos[has_answers_idx])
loss.append(loss_margin_pos)
logits = logits.view(-1, seq_len * seq_len)
labels_batch = labels_batch.view(-1, seq_len * seq_len)
logits_soft = torch.softmax(logits, dim=1)
loss_flat = torch.sum(logits_soft * labels_batch, dim=1)
loss_flat = -torch.log(torch.clamp(loss_flat, 0.0001, 1))
loss_flat = torch.mean(loss_flat[has_answers_idx], dim=0)
loss.append(loss_flat)
return sum(loss) / len(loss)
def extract_loss(self, logits, span_targets, qs_ext):
bs, seq_len, seq_len = logits.size()
qs_ext = qs_ext.view(-1)
labels_batch = []
loss = []
has_answers = []
global_has_answer = False
for spans in span_targets:
label_matrix = [[0] * seq_len for i in range(seq_len)]
has_answer = 0
for (beg, end) in spans:
label_matrix[beg][end] = 1
has_answer = 1
global_has_answer = True
has_answers.append(has_answer)
labels_batch.append(label_matrix)
labels_batch = torch.tensor(labels_batch, dtype=torch.float).to(device)
has_answers = torch.tensor(has_answers, dtype=torch.float).to(device)
has_answers_idx = has_answers > 0
neg_span = logits * (1 - labels_batch)
neg_span_max, _ = torch.max(neg_span, dim=2)
neg_span_max, _ = torch.max(neg_span_max, dim=1)
loss_margin_neg = torch.clamp_min(1 - (qs_ext - neg_span_max), 0)
loss_margin_neg = torch.mean(loss_margin_neg, dim=0)
loss.append(loss_margin_neg)
if global_has_answer is False:
return loss_margin_neg
pos_span = 0 - logits * labels_batch
pos_span = pos_span - 10000.0 * (1 - labels_batch)
pos_span_min, _ = torch.max(pos_span, dim=2)
pos_span_min, _ = torch.max(pos_span_min, dim=1)
pos_span_min = 0 - pos_span_min
loss_margin_pos = torch.clamp_min(1 - (pos_span_min - qs_ext), 0)
loss_margin_pos = torch.mean(loss_margin_pos[has_answers_idx])
loss.append(loss_margin_pos)
logits = logits.view(-1, seq_len * seq_len)
labels_batch = labels_batch.view(-1, seq_len * seq_len)
logits_soft = torch.softmax(logits, dim=1)
loss_flat = torch.sum(logits_soft * labels_batch, dim=1)
loss_flat = -torch.log(torch.clamp(loss_flat, 0.0001, 1))
loss_flat = torch.mean(loss_flat[has_answers_idx], dim=0)
loss += [loss_flat]
return sum(loss) / len(loss), labels_batch
def get_max_gap(datasets, tokenizer):
max_gap = 0
for sample in datasets:
answers = sample['answers']
for answer in answers:
answer_token = tokenizer.tokenize(answer)
if len(answer_token) > max_gap:
max_gap = len(answer_token)
return max_gap + 5
def get_input_feature(features, max_source_length):
input_texts, span_targets, contexts = [], [], []
for sample in features:
context = sample['context']
if context.strip() == "":
context = 'context'
contexts.append(context)
question = sample['question']
answers_idx = sample['answers_idx']
answers_idx = sorted(answers_idx, key=lambda x: x[0])
span_targets.append(answers_idx)
input_texts.append((question, context))
encoding = tokenizer(input_texts,
padding='longest',
max_length=max_source_length,
truncation=True,
return_tensors="pt",
return_offsets_mapping=True)
input_ids = encoding.input_ids.to(device)
attention_mask = encoding.attention_mask.to(device)
token_type_ids = encoding.token_type_ids.to(device)
offset_mapping = encoding['offset_mapping']
offset_mapping = offset_mapping.tolist()
offset_mapping_contexts = []
question_ranges, context_ranges = [], []
subword_targets = []
for offset_mapping_item, span_targets_item, context in zip(offset_mapping, span_targets, contexts):
end1, end2 = -1, -1
for i, (token_beg, token_end) in enumerate(offset_mapping_item):
if i == 0:
continue
if token_beg == 0 and token_end == 0 and end1 == -1:
end1 = i
elif token_beg == 0 and token_end == 0 and end1 > -1:
end2 = i
break
assert end1 >= 1
if end2 == -1:
end2 = len(offset_mapping_item) - 1
question_ranges.append((1, end1 - 1))
assert end1 + 1 < end2 - 1
context_ranges.append((end1 + 1, end2 - 1))
offset_mapping_context_item = offset_mapping_item[end1 + 1: end2]
offset_mapping_contexts.append(offset_mapping_context_item)
a_idx = 0
subword_targets_item = []
beg_idx_selected, end_idx_selected = -1, -1
for i, (token_beg, token_end) in enumerate(offset_mapping_context_item):
if a_idx >= len(span_targets_item):
break
beg_idx_search, end_idx_search = span_targets_item[a_idx]
if token_beg <= beg_idx_search and beg_idx_search < token_end and beg_idx_selected == -1:
beg_idx_selected = i
if token_beg <= end_idx_search and end_idx_search <= token_end:
end_idx_selected = i
assert beg_idx_selected <= end_idx_selected
subword_targets_item.append([beg_idx_selected, end_idx_selected])
a_idx += 1
beg_idx_selected, end_idx_selected = -1, -1
subword_targets.append(subword_targets_item)
return input_ids, token_type_ids, attention_mask, context_ranges, question_ranges, offset_mapping_contexts, subword_targets
def subwordid_to_text(batch_example, spans_predict, token_idx_maps, results, golds_answers):
for sample, spans_p, token_idx_map in zip(batch_example, spans_predict, token_idx_maps):
context = sample['context']
id = sample['id']
answers_item = []
for beg, end in spans_p:
word_idx_beg, _ = token_idx_map[beg]
_, word_idx_end = token_idx_map[end]
answer = context[word_idx_beg: word_idx_end]
assert answer != ""
answers_item.append(answer)
results[id] = answers_item
golds_answers[id] = sample['answers']
@torch.no_grad()
def evaluate(model, test_examples, eval_batch_size, max_len):
model.eval()
step_count = len(test_examples) // eval_batch_size
if step_count * eval_batch_size < len(test_examples):
step_count += 1
step_trange = trange(step_count)
golds_answers, results = {}, {}
for step in step_trange:
beg_index = step * eval_batch_size
end_index = min((step + 1) * eval_batch_size, len(test_examples))
batch_example = [example for example in test_examples[beg_index:end_index]]
input_ids, token_type_ids, attention_mask, context_ranges, question_ranges, offset_mapping_contexts,\
subword_targets = get_input_feature(
batch_example, max_source_length=max_len)
spans_predict = model(input_ids, token_type_ids, attention_mask, context_ranges)
subwordid_to_text(batch_example, spans_predict, offset_mapping_contexts, results, golds_answers)
results_cp = {}
keys = results.keys()
for key in keys:
results_cp[key] = [item for item in results[key]]
result_score = None
if golds_answers is not None:
result_score = multi_span_evaluate(copy.deepcopy(results), copy.deepcopy(golds_answers))
result_score = {
'em_f1': result_score['em_f1'],
'overlap_f1': result_score['overlap_f1']
}
return result_score, results_cp
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument("--gpu",
default='0',
type=str)
parser.add_argument("--model_name",
default='bert-base-uncased',
# default='microsoft/deberta-v3-base',
type=str)
parser.add_argument("--dataset_name",
default='MultiSpanQA',
type=str)
parser.add_argument("--dataset_split",
default='in_house',
type=str)
parser.add_argument("--vanilla",
default=False,
type=ast.literal_eval)
parser.add_argument("--only_eval",
default=False,
type=ast.literal_eval)
parser.add_argument("--debug",
default=False,
type=ast.literal_eval)
parser.add_argument("--results_save_path",
default='./results/',
type=str)
parser.add_argument("--train_batch_size",
default=32,
type=int,
help="Total batch size for training.")
parser.add_argument("--eval_batch_size",
default=1,
type=int,
help="Total batch size for eval.")
parser.add_argument('--gradient_accumulation_steps',
type=int,
default=4,
help="Number of updates steps to accumulate before performing a backward/update pass.")
parser.add_argument("--output_dir",
default='./outputs/',
type=str,
help="The output dreader2ctory whretriever the model checkpoints will be written.")
parser.add_argument("--init_checkpoint",
default=False,
type=ast.literal_eval,
help="Initial checkpoint (usually from a pre-trained BERT model)")
parser.add_argument("--max_len",
default=512,
type=int)
parser.add_argument("--lr",
default=3e-5,
type=float,
help="The initial learning rate for Adam.")
parser.add_argument("--epoch_num",
default=20,
type=int,
help="Total number of training epochs to perform.")
parser.add_argument('--seed',
type=int,
default=0,
help="random seed for initialization")
args = parser.parse_args()
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu
vanilla = args.vanilla
force_answer = True
if args.dataset_name == 'MultiSpanQA':
force_answer = False
only_eval = args.only_eval
dim2 = 64
debug = args.debug
if args.model_name.endswith('/'):
args.model_name = args.model_name[:-1]
model_name_abb = args.model_name.split('/')[-1]
config_name = f'{args.dataset_name}/{model_name_abb}/'
parameter_name = f'lr_{args.lr}_seed_{args.seed}_bs_{args.train_batch_size}' \
f'_ga_{args.gradient_accumulation_steps}'
output_model_path = f'./outputs/{config_name}/{parameter_name}/'
path_save_result = f'./results/{config_name}/{parameter_name}/'
data_path_base = f'./data/{args.dataset_split}/{args.dataset_name}/'
data_path_train = f'{data_path_base}/train.json'
data_path_dev = f'{data_path_base}/valid.json'
data_path_test = f'{data_path_base}/test.json'
os.makedirs(path_save_result, exist_ok=True)
set_seed(args.seed)
if args.dataset_name == 'QUOREF':
read_dataset = read_quoref
else:
read_dataset = read_msqa
if 'deberta' in model_name_abb.lower():
Tokenizer = DebertaTokenizerFast
elif 'albert' in model_name_abb.lower():
Tokenizer = AlbertTokenizerFast
else:
Tokenizer = BertTokenizerFast
train_examples = read_dataset(data_path_train)
dev_examples = read_dataset(data_path_dev)
test_examples = read_dataset(data_path_test)
if debug:
train_examples = train_examples[:20]
dev_examples = dev_examples[:20]
test_examples = test_examples[:20]
train_batch_size = args.train_batch_size // args.gradient_accumulation_steps
tokenizer = AutoTokenizer.from_pretrained(args.model_name)
max_span_gap = get_max_gap(train_examples, tokenizer)
model = SpanQualifier(args.model_name, max_span_gap, dim2, args.max_len, vanilla).to(device)
print('# parameters:', sum(param.numel() for param in model.parameters()))
print(json.dumps({"lr": args.lr, "model": args.model_name, "seed": args.seed,
"bs": args.train_batch_size,
"vanilla": vanilla,
'gradient_accumulation_steps': args.gradient_accumulation_steps,
"epoch": args.epoch_num,
"train_path": data_path_train,
"dev_path": data_path_dev,
"test_path": data_path_test,
"train_size": len(train_examples),
"dev_size": len(dev_examples),
"test_size": len(test_examples),
'max_len': args.max_len,
'output_model_path': output_model_path,
'path_save_result': path_save_result,
'init_checkpoint': args.init_checkpoint,
'max_span_gap':max_span_gap}, indent=2))
if args.init_checkpoint:
init_checkpoint = f'{output_model_path}/pytorch_model.bin'
checkpoint = torch.load(init_checkpoint, map_location='cpu')
model_dict = checkpoint['model_state_dict']
new_state_dict = OrderedDict()
for k in list(model_dict.keys()):
name = k
if k.startswith('module.bert.bert.'):
name = k.replace("module.bert.", "")
new_state_dict[name] = model_dict[k]
del model_dict[k]
model.load_state_dict(new_state_dict, False)
print('init from:', init_checkpoint)
if only_eval:
result_score_dev, results_dev = evaluate(model, dev_examples, args.eval_batch_size, args.max_len)
print('result_score_dev:', result_score_dev)
save_dataset(path_save_result + '/dev.json', results_dev)
result_score_test, results_test = evaluate(model, test_examples, args.eval_batch_size, args.max_len)
print('result_score_test:', result_score_test)
save_dataset(path_save_result + '/test.json', results_test)
exit(0)
warm_up_ratio = 0.05
optimizer = torch.optim.AdamW(model.parameters(), lr=args.lr, weight_decay=0.01)
t_total = args.epoch_num * (len(train_examples) // train_batch_size // args.gradient_accumulation_steps)
scheduler = get_linear_schedule_with_warmup(optimizer=optimizer,
num_warmup_steps=int(warm_up_ratio * (t_total)),
num_training_steps=t_total)
step_count, step_all, early_stop = 0, 0, 0
best_dev_rouge_score, best_test_rouge_score = 0, 0
if args.init_checkpoint:
result_score_dev, results_dev = evaluate(model, dev_examples, args.eval_batch_size, args.max_len)
print('best_dev_result:', result_score_dev)
best_dev_acc = result_score_dev['overlap_f1'] + result_score_dev['em_f1']
else:
best_dev_acc = 0
best_dev_result, best_test_result = None, None
for epoch in range(args.epoch_num):
tr_loss, nb_tr_steps = 0, 0.1
if early_stop>=5:
break
early_stop += 1
order = list(range(len(train_examples)))
random.seed(args.seed + epoch)
random.shuffle(order)
model.train()
step_count = len(train_examples) // train_batch_size
if step_count * train_batch_size < len(train_examples):
step_count += 1
step_trange = trange(step_count)
for step in step_trange:
step_all += 1
beg_index = step * train_batch_size
end_index = min((step + 1) * train_batch_size, len(train_examples))
order_index = order[beg_index:end_index]
batch_example = [train_examples[index] for index in order_index]
input_ids, token_type_ids, attention_mask, context_ranges, question_ranges, offset_mapping_contexts, subword_targets = get_input_feature(
batch_example, max_source_length=args.max_len)
try:
loss = model(input_ids, token_type_ids, attention_mask, context_ranges, targets=subword_targets)
loss = loss.mean()
tr_loss += loss.item()
nb_tr_steps += 1
loss = loss / args.gradient_accumulation_steps
loss.backward()
if (step + 1) % args.gradient_accumulation_steps == 0:
optimizer.step()
scheduler.step()
optimizer.zero_grad()
except Exception as e:
print('error:',e)
loss_show = ' Epoch:' + str(epoch) + " loss:" + str(
round(tr_loss / nb_tr_steps, 4)) + f" lr:{'%.2E' % scheduler.get_last_lr()[0]}"
step_trange.set_postfix_str(loss_show)
result_score_dev, results_dev = evaluate(model, dev_examples, args.eval_batch_size, args.max_len)
f1 = result_score_dev['overlap_f1'] + result_score_dev['em_f1']
print(result_score_dev)
if f1 > best_dev_acc:
early_stop = 0
best_dev_result = result_score_dev
best_dev_acc = f1
save_model(output_model_path, model, optimizer)
save_dataset(path_save_result + '/dev.json', results_dev)
print('save new best')
result_score_test, results_test = evaluate(model, test_examples, args.eval_batch_size, args.max_len)
best_test_result = result_score_test
print('test:', result_score_test)
save_dataset(path_save_result + '/test.json', results_test)
print('best_dev_result:', best_dev_result)
print('best_test_result:', best_test_result)
print(path_save_result)