-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgenerate_tf_records.py
139 lines (116 loc) · 5.12 KB
/
generate_tf_records.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
'''
Reference repo: https://github.com/EdjeElectronics/TensorFlow-Object-Detection-API-Tutorial-Train-Multiple-Objects-Windows-10/blob/master/generate_tfrecord.py
It's necessary to install the tensorflow object detection first
'''
import tensorflow as tf
import pandas as pd
import argparse
import logging
import io
import os
from PIL import Image
from object_detection.utils import dataset_util
from collections import namedtuple, OrderedDict
logging.basicConfig(format='%(levelname)s:%(message)s', level=logging.INFO)
class TFRecord:
def __init__(self, labelmap_file) -> None:
f = open(labelmap_file, "r")
labelmap = f.read()
self.class_names = self.init_names(labelmap)
def init_names(self, labelmap) -> dict:
items = labelmap.split('item')[1:]
items_dict = {}
for item in items:
name = str(item.split('name')[1].split('"')[1])
name_id = int(item.split('name')[1].split('id')[1].\
split(": ")[1].split('}')[0])
items_dict[name] = name_id
return items_dict
def class_text_to_int(self, row_label) -> int:
if self.class_names[row_label] is not None:
return self.class_names[row_label]
else:
None
def split(self, df, group):
data = namedtuple('data', ['filename', 'object'])
gb = df.groupby(group)
return [data(filename, gb.get_group(x)) for filename, x in \
zip(gb.groups.keys(), gb.groups)]
def create_tf(self, group, path):
with tf.io.gfile.GFile(os.path.join(path, '{}'\
.format(group.filename)), 'rb') as fid:
encoded_jpg = fid.read()
encoded_jpg_io = io.BytesIO(encoded_jpg)
image = Image.open(encoded_jpg_io)
width, height = image.size
filename = group.filename.encode('utf8')
image_format = b'jpg'
xmins = []
xmaxs = []
ymins = []
ymaxs = []
classes_text = []
classes = []
for index, row in group.object.iterrows():
xmins.append(row['xmin'] / width)
xmaxs.append(row['xmax'] / width)
ymins.append(row['ymin'] / height)
ymaxs.append(row['ymax'] / height)
if not (isinstance(row['class'], str)):
row['class'] = str(row['class'])
classes_text.append(row['class'].encode('utf8'))
classes.append(self.class_text_to_int(row['class']))
tf_sample = tf.train.Example(features=tf.train.Features(feature={
'image/height': dataset_util.int64_feature(height),
'image/width': dataset_util.int64_feature(width),
'image/filename': dataset_util.bytes_feature(filename),
'image/source_id': dataset_util.bytes_feature(filename),
'image/encoded': dataset_util.bytes_feature(encoded_jpg),
'image/format': dataset_util.bytes_feature(image_format),
'image/object/bbox/xmin': dataset_util.float_list_feature(xmins),
'image/object/bbox/xmax': dataset_util.float_list_feature(xmaxs),
'image/object/bbox/ymin': dataset_util.float_list_feature(ymins),
'image/object/bbox/ymax': dataset_util.float_list_feature(ymaxs),
'image/object/class/text':\
dataset_util.bytes_list_feature(classes_text),
'image/object/class/label':\
dataset_util.int64_list_feature(classes),
}))
return tf_sample
def generate(self, output_path, image_dir, csv_input) -> None:
writer = tf.io.TFRecordWriter(output_path)
path = os.path.join(image_dir)
data = pd.read_csv(csv_input)
grouped = self.split(data, 'filename')
for group in grouped:
try:
tf_sample = self.create_tf(group, path)
writer.write(tf_sample.SerializeToString())
except:
continue
logging.info('Successfully created the TFRecords: {}'.format(output_path))
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Generate tf record")
parser.add_argument('-l', '--labelmap',
help = 'Labelmap path',
default = 'labelmap.txt',
dest = 'labelmap_file'
)
parser.add_argument('-o', '--output',
help = 'Output path',
default = 'train.record',
dest = 'output_path'
)
parser.add_argument('-i', '--imagesdir',
help = 'Images directory',
default = 'dataset/images',
dest = 'image_dir'
)
parser.add_argument('-csv', '--csvinput',
help = 'CSV with images names',
default = 'dataset/labels.csv',
dest = 'csv_input'
)
args = parser.parse_args()
tf_record = TFRecord(args.labelmap_file)
tf_record.generate(args.output_path, args.image_dir, args.csv_input)