-
Notifications
You must be signed in to change notification settings - Fork 47
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Convert Output to COLMAP FORMAT #30
Comments
Here I provide a simple script to convert the result to the COLMAP format import cv2
import os
from pathlib import Path
import open3d as o3d
import numpy as np
import trimesh
def save_cameras(pose_file, sparse_dir):
# assume all images are the same
rgb_files = []
rots = []
translations = []
focal_lengths = []
confidences = []
with open(pose_file, 'r') as f:
for line in f:
tokens = line.split()
rgb_files.append(tokens[0])
qw, qx, qy, qz = [float(t) for t in tokens[1:5]]
rots.append([qw, qx, qy, qz])
tx, ty, tz = [float(t) for t in tokens[5:8]]
translations.append([tx, ty, tz])
focal_length = float(tokens[8])
confidence = float(tokens[9])
focal_lengths.append(focal_length)
confidences.append(confidence)
rgb_image = cv2.imread(rgb_files[0])
imgs_shape = rgb_image.shape #(H,W,C)
print(imgs_shape)
target_file=os.path.join(sparse_dir, 'cameras.txt')
with open(target_file, 'w') as f:
f.write('# Camera list with one line of data per camera:\n')
f.write('# CAMERA_ID, MODEL, WIDTH, HEIGHT, PARAMS[]\n')
for i in range(len(rgb_files)):
f.write(f"{i} PINHOLE {imgs_shape[1]} {imgs_shape[0]} {focal_lengths[i]} {focal_lengths[i]} {imgs_shape[1]/2} {imgs_shape[0]/2}\n")
def save_images_txt(pose_file, sparse_dir):
images_file = os.path.join(sparse_dir, 'images.txt')
rgb_files = []
rots = []
translations = []
focal_lengths = []
confidences = []
with open(pose_file, 'r') as f:
for line in f:
tokens = line.split()
rgb_files.append(tokens[0])
qw, qx, qy, qz = [float(t) for t in tokens[1:5]]
rots.append([qw, qx, qy, qz])
tx, ty, tz = [float(t) for t in tokens[5:8]]
translations.append([tx, ty, tz])
focal_length = float(tokens[8])
confidence = float(tokens[9])
focal_lengths.append(focal_length)
confidences.append(confidence)
with open(images_file, 'w') as f:
f.write("# Image list with two lines of data per image:\n")
f.write("# IMAGE_ID, QW, QX, QY, QZ, TX, TY, TZ, CAMERA_ID, NAME\n")
f.write("# POINTS2D[] as (X, Y, POINT3D_ID)\n")
for i in range(len(rgb_files)):
name = Path(rgb_files[i]).stem
qw, qx, qy, qz = rots[i]
tx, ty, tz = translations[i]
f.write(f"{i} {qw} {qx} {qy} {qz} {tx} {ty} {tz} {i} {name}.png\n\n")
def save_point_cloud(pt_file, sparse_dir):
cloud = o3d.io.read_point_cloud(pt_file, format='xyzrgb')
pts=np.asarray(cloud.points).reshape(-1,3)[::3]
colors=np.asarray(cloud.colors).reshape(-1,3)[::3]
colors = colors.astype(np.uint8)
# clamp colors in [0,255]
colors = np.clip(colors, 0, 255)
save_path = os.path.join(sparse_dir, 'points3D.txt')
header = """#3D point list with one line of data per point:
#POINT3D_ID, X, Y, Z, R, G, B, ERROR, TRACK[] as (IMAGE_ID, POINT2D_IDX)
#Number of points: 3, mean track length: 3.3334
"""
with open(save_path, 'w') as f:
f.write(header)
for i, (pt, color) in enumerate(zip(pts, colors)):
f.write(f"{i} {pt[0]} {pt[1]} {pt[2]} {int(color[0])} {int(color[1])} {int(color[2])}\n")
# save as ply
save_path = os.path.join(sparse_dir, 'points3D.ply')
normals = np.tile([0, 1, 0], (pts.shape[0], 1))
pct = trimesh.PointCloud(pts, colors=colors)
pct.vertices_normal = normals
default_normal = [0, 1, 0]
vertices = pct.vertices
colors = pct.colors
normals = np.tile(default_normal, (vertices.shape[0], 1))
header = """ply
format ascii 1.0
element vertex {}
property float x
property float y
property float z
property uchar red
property uchar green
property uchar blue
property float nx
property float ny
property float nz
end_header
""".format(len(vertices))
with open(save_path, 'w') as f:
f.write(header)
for vertex, color, normal in zip(vertices, colors, normals):
f.write(f"{vertex[0]} {vertex[1]} {vertex[2]} {int(color[0])} {int(color[1])} {int(color[2])} {normal[0]} {normal[1]} {normal[2]}\n")
if __name__ == '__main__':
src_dir='path_to_ace0_res'
pose_file=os.path.join(src_dir, 'poses_final.txt')
pt_file=os.path.join(src_dir, 'point_cloud_out.txt')
sparse_dir=os.path.join(src_dir, 'sparse')
if not os.path.exists(sparse_dir):
os.makedirs(sparse_dir)
save_cameras(pose_file, sparse_dir)
save_images_txt(pose_file, sparse_dir)
save_point_cloud(pt_file, sparse_dir) The |
Thank you for the contribution! Pinning this issue for visibility. |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Is there any way to convert output pose_final.txt into colmap's camera/images/point3D Format?
Thank you in advance, wonderful work
The text was updated successfully, but these errors were encountered: