-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDecay_search_tmp.py
794 lines (581 loc) · 24.8 KB
/
Decay_search_tmp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
# -*- coding: utf-8 -*-
"""
Created on Mar Jan 15 11:21:12 2019
@author: marcorax, pedro
This script serve as a test for different implementations, and parameter exploration
of HOTS under the name gordoNN to be tested with multiple speech recognition tests.
HOTS (The type of neural network implemented in this project) is a machine learning
method totally unsupervised.
To test if the algorithm is learning features from the dataset, a simple classification
task is accomplished with the use multiple classifiers, taking the activity
of the last layer.
If by looking at the activities of the last layer we can sort out the class of the
input data, it means that the network has managed to separate the classes.
"""
# General Porpouse Libraries
import numpy as np
import matplotlib.pyplot as plt
from matplotlib import offsetbox
import seaborn as sns
import os, gc, pickle
import pandas as pd
# To use CPU for training
# os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID" # see issue #152
# os.environ["CUDA_VISIBLE_DEVICES"] = ""log
# To allow more memory to be allocated on gpus incrementally
# os.environ["TF_FORCE_GPU_ALLOW_GROWTH"] = "true"
# Data loading Libraries
from Libs.Data_loading.dataset_load import on_off_load, data_load
from Libs.GORDONN.Layers.Local_Layer import Local_Layer
from Libs.GORDONN.Layers.Cross_Layer import Cross_Layer
from Libs.GORDONN.Layers.Pool_Layer import Pool_Layer
from Libs.GORDONN.Network import GORDONN
# 3D Dimensional HOTS or Solid HOTS
from Libs.Solid_HOTS.Network import Solid_HOTS_Net
# from Libs.Solid_HOTS._General_Func import first_layer_sampling_plot, other_layers_sampling_plot, first_layer_sampling, recording_local_surface_generator
# To avoid MKL inefficient multithreading (helped for some AMD processors before)
# now disabled
# os.environ['MKL_NUM_THREADS'] = '1'
# Plotting settings
sns.set(style="white")
# plt.style.use("dark_background")
### Selecting the dataset
shuffle_seed = 25 # seed used for dataset shuffling if set to 0 the process will be totally random
# shuffle_seed = 0
#%% Google Commands Dataset small
# 30 class of recordings are used. They consists of simple keywords
# =============================================================================
# number_files_dataset : the number of files to be loaded for each class
# train_test_ratio: ratio between the amount of files used to train
# and test the algorithm, 0.5 will mean that the
# half of the files wiil be used for training.
# use_all_addr : if False all off events will be dropped, and the total addresses
# number will correspond to the number of channels of the cochlea
# =============================================================================
number_files_dataset = 1000
train_test_ratio = 0.80
use_all_addr = False
number_of_labels = 8
dataset_folder ='Data/Google_Command'
spacing=1
# classes=['off','on']
classes=['stop', 'left', 'no', 'go', 'yes', 'down', 'right', 'up']
[dataset_train, dataset_test, labels_train, labels_test, filenames_train, filenames_test, classes] = data_load(dataset_folder, number_files_dataset, train_test_ratio, shuffle_seed, use_all_addr, spacing, class_names=classes)
#%% Network settings
#Actual decay
df = pd.read_csv (r'whitenoise.csv')
mean_rate =np.asarray(df.columns[:], dtype=float)
channel_taus = 1/mean_rate
channel_taus = channel_taus/channel_taus[0]
input_channels = 32 + 32*use_all_addr
n_features=20
local_tv_length=10
n_input_channels=input_channels
n_batch_files=None
dataset_runs=1
n_threads=24
#Original
# channel_taus = np.linspace(2,9,32)
# channel_taus = channel_taus/channel_taus[0]
#No Att
# channel_taus = 1
#%% First layer decay search
Tau_T_first = np.power(10,np.arange(0.1,4,0.3))*2
eucl_res= []
euclnorm_res = []
svc_eucl_res=[]
svc_euclnorm_res = []
for Tau_T in Tau_T_first:
taus = (Tau_T*channel_taus)
layer_parameters = [n_features, local_tv_length, n_input_channels, taus,\
n_batch_files, dataset_runs]
Net = GORDONN(n_threads=24, verbose=True)
Net.add_layer("Local", layer_parameters)
Net.learn(dataset_train,labels_train,classes)
Net.predict(dataset_test, labels_train, labels_test, classes)
print("Histogram accuracy: "+str(Net.layers[0].hist_accuracy))
print("Norm Histogram accuracy: "+str(Net.layers[0].norm_hist_accuracy))
print("SVC Histogram accuracy: "+str(Net.layers[0].svm_hist_accuracy))
print("SVC norm Histogram accuracy: "+str(Net.layers[0].svm_norm_hist_accuracy))
eucl_res.append(Net.layers[0].hist_accuracy)
euclnorm_res.append(Net.layers[0].norm_hist_accuracy)
svc_eucl_res.append(Net.layers[0].svm_hist_accuracy)
svc_euclnorm_res.append(Net.layers[0].svm_norm_hist_accuracy)
#%% Save Layer results
# layer_res = {'Eucl_res': eucl_res, 'Norm_eucl_res': euclnorm_res,\
# 'svc_Eucl_res': svc_eucl_res, 'svc_Norm_eucl_res': svc_euclnorm_res,\
# 'Taus_T' : Tau_T_first}
# with open('Results/Decay_search_tmp/no_att.pickle', 'wb') as handle:
# pickle.dump(layer_res, handle, protocol=pickle.HIGHEST_PROTOCOL)
# #%% Load Layer results
filename = "no_att"
with open('Results/Decay_search_tmp/'+str(filename)+'.pickle', 'rb') as handle:
layer_res = pickle.load(handle)
#%% Load Layer results
filename_old = "model_actual"
with open('Results/Decay_search_tmp/'+str(filename_old)+'.pickle', 'rb') as handle:
layer_res_old = pickle.load(handle)
#%% Comparison HOTS layer and Hack Layer norm eucl
plt.figure()
plt.plot(layer_res_old['Taus_T'], layer_res_old['Norm_eucl_res'], label=filename_old)
plt.plot(layer_res['Taus_T'], layer_res['Norm_eucl_res'], label=filename)
plt.xlabel("Tau first layer (us)")
plt.ylabel("Recognition rates")
plt.grid(axis = 'y', linestyle = '--', linewidth = 0.5)
plt.title("Parameter search simple Euclidean classifier")
plt.legend()
#%% Comparison HOTS layer and Hack Layer eucl
plt.figure()
plt.plot(layer_res_old['Taus_T'], layer_res_old['Eucl_res'], label=filename_old)
plt.plot(layer_res['Taus_T'], layer_res['Eucl_res'], label=filename)
plt.xlabel("Tau first layer (us)")
plt.ylabel("Recognition rates")
plt.grid(axis = 'y', linestyle = '--', linewidth = 0.5)
plt.title("Parameter search simple normalized Euclidean classifier")
plt.legend()
#%% Comparison HOTS layer and Hack Layer svc
plt.figure()
plt.plot(layer_res_old['Taus_T'], layer_res_old['svc_Eucl_res'], label=filename_old)
plt.plot(layer_res['Taus_T'], layer_res['svc_Eucl_res'], label=filename)
plt.xlabel("Tau first layer (us)")
plt.ylabel("Recognition rates")
plt.grid(axis = 'y', linestyle = '--', linewidth = 0.5)
plt.title("Parameter search SVM classifier")
plt.legend()
#%% Comparison HOTS layer and Hack Layer svc norm
plt.figure()
plt.plot(layer_res_old['Taus_T'], layer_res_old['svc_Norm_eucl_res'], label=filename_old)
plt.plot(layer_res['Taus_T'], layer_res['svc_Norm_eucl_res'], label=filename)
plt.xlabel("Tau first layer (us)")
plt.ylabel("Recognition rates")
plt.grid(axis = 'y', linestyle = '--', linewidth = 0.5)
plt.title("Parameter search SVM normalized classifier")
plt.legend()
#%% Second layer decay search
Tau_T=125
taus = (Tau_T*channel_taus)
local_layer_parameters = [n_features, local_tv_length, n_input_channels, taus,\
n_batch_files, dataset_runs]
Net = GORDONN(n_threads=24, verbose=True)
Net.add_layer("Local", local_layer_parameters)
Net.learn(dataset_train, labels_train, classes)
Net.predict(dataset_test, labels_train, labels_test, classes)
#Second layer parameters
n_input_features=n_features
n_input_channels=input_channels
n_features=64
# cross_tv_width=6
cross_tv_width=3
taus=50e3
cross_layer_parameters = [n_features, cross_tv_width,
n_input_channels, taus,
n_input_features, n_batch_files,
dataset_runs]
Net.add_layer("Cross", cross_layer_parameters)
# Tau_C_first = np.power(10,np.arange(0.1,5,0.3))*2
# Tau_C_first = np.power(10,np.arange(4,4.8,0.05))*2
Tau_C_first = np.power(10,np.arange(0.1,4.8,0.1))*20
eucl_res= []
euclnorm_res = []
svc_eucl_res=[]
svc_euclnorm_res = []
for Tau_indx, Tau_C in enumerate(Tau_C_first):
Net.layers[1].taus=Tau_C
if Tau_indx==0:
Net.learn(dataset_train, labels_train, classes)
Net.predict(dataset_test, labels_train, labels_test, classes)
else:
Net.learn(dataset_train, labels_train, classes, rerun_layer=1)
Net.predict(dataset_test, labels_train, labels_test, classes, rerun_layer=1)
print("Histogram accuracy: "+str(Net.layers[1].hist_accuracy))
print("Norm Histogram accuracy: "+str(Net.layers[1].norm_hist_accuracy))
print("SVC Histogram accuracy: "+str(Net.layers[1].svm_hist_accuracy))
print("SVC norm Histogram accuracy: "+str(Net.layers[1].svm_norm_hist_accuracy))
eucl_res.append(Net.layers[1].hist_accuracy)
euclnorm_res.append(Net.layers[1].norm_hist_accuracy)
svc_eucl_res.append(Net.layers[1].svm_hist_accuracy)
svc_euclnorm_res.append(Net.layers[1].svm_norm_hist_accuracy)
#%% Save Layer results
layer_res = {'Eucl_res': eucl_res, 'Norm_eucl_res': euclnorm_res,\
'svc_Eucl_res': svc_eucl_res, 'svc_Norm_eucl_res': svc_euclnorm_res,\
'Taus_C' : Tau_C_first}
with open('Results/Decay_search_tmp/Lay_2_small.pickle', 'wb') as handle:
pickle.dump(layer_res, handle, protocol=pickle.HIGHEST_PROTOCOL)
#%% Load Layer results
filename = "Lay_2_small"
with open('Results/Decay_search_tmp/'+str(filename)+'.pickle', 'rb') as handle:
layer_res = pickle.load(handle)
#%% Plot layer 2 results
plt.plot(layer_res['Taus_C'], layer_res['Eucl_res'], label="Eucl_res")
plt.plot(layer_res['Taus_C'], layer_res['Norm_eucl_res'], label="Norm_eucl_res")
plt.plot(layer_res['Taus_C'], layer_res['svc_Eucl_res'], label="svc_Eucl_res")
plt.plot(layer_res['Taus_C'], layer_res['svc_Norm_eucl_res'], label="svc_Norm_eucl_res")
plt.xlabel("Tau second layer (us)")
plt.ylabel("Recognition rates")
plt.grid(axis = 'y', linestyle = '--', linewidth = 0.5)
plt.title("Classifier performance")
plt.legend()
#%% Fourth (Second cross layer) layer decay search
#First Layer parameters
Tau_T=125
taus = (Tau_T*channel_taus)
input_channels = 32 + 32*use_all_addr
n_features=20
local_tv_length=10
n_input_channels=input_channels
n_batch_files=None
dataset_runs=1
local_layer_parameters = [n_features, local_tv_length, n_input_channels, taus,\
n_batch_files, dataset_runs]
Net = GORDONN(n_threads=24, verbose=True)
Net.add_layer("Local", local_layer_parameters)
#Second layer parameters
n_input_features=n_features
n_input_channels=32
n_features=64
cross_tv_width=3
taus=20e3
cross_layer_parameters = [n_features, cross_tv_width,
n_input_channels, taus,
n_input_features, n_batch_files,
dataset_runs]
Net.add_layer("Cross", cross_layer_parameters)
#Pool Layer
n_input_channels=32
pool_factor=2
Net.add_layer("Pool", [n_input_channels, pool_factor])
#4th Cross layer
n_input_features=n_features
n_input_channels=16
n_features=128
cross_tv_width=3
taus=20e3
cross_layer_parameters = [n_features, cross_tv_width,
n_input_channels, taus,
n_input_features, n_batch_files,
dataset_runs]
Net.add_layer("Cross", cross_layer_parameters)
Tau_C_first = np.power(10,np.arange(0.1,4.8,0.1))*20
eucl_res= []
euclnorm_res = []
svc_eucl_res=[]
svc_euclnorm_res = []
for Tau_indx, Tau_C in enumerate(Tau_C_first):
Net.layers[3].taus=Tau_C
if Tau_indx==0:
Net.learn(dataset_train, labels_train, classes)
Net.predict(dataset_test, labels_train, labels_test, classes)
else:
Net.learn(dataset_train, labels_train, classes, rerun_layer=3)
Net.predict(dataset_test, labels_train, labels_test, classes, rerun_layer=3)
print("Histogram accuracy: "+str(Net.layers[3].hist_accuracy))
print("Norm Histogram accuracy: "+str(Net.layers[3].norm_hist_accuracy))
print("SVC Histogram accuracy: "+str(Net.layers[3].svm_hist_accuracy))
print("SVC norm Histogram accuracy: "+str(Net.layers[3].svm_norm_hist_accuracy))
eucl_res.append(Net.layers[3].hist_accuracy)
euclnorm_res.append(Net.layers[3].norm_hist_accuracy)
svc_eucl_res.append(Net.layers[3].svm_hist_accuracy)
svc_euclnorm_res.append(Net.layers[3].svm_norm_hist_accuracy)
#%% Save Layer results
# layer_res = {'Eucl_res': eucl_res, 'Norm_eucl_res': euclnorm_res,\
# 'svc_Eucl_res': svc_eucl_res, 'svc_Norm_eucl_res': svc_euclnorm_res,\
# 'Taus_C' : Tau_C_first}
# with open('Results/Decay_search_tmp/Lay_4.pickle', 'wb') as handle:
# pickle.dump(layer_res, handle, protocol=pickle.HIGHEST_PROTOCOL)
#%% Load Layer results
filename = "Lay_4"
with open('Results/Decay_search_tmp/'+str(filename)+'.pickle', 'rb') as handle:
layer_res = pickle.load(handle)
#%% Plot layer 4 results
plt.plot(layer_res['Taus_C'], layer_res['Eucl_res'], label="Eucl_res")
plt.plot(layer_res['Taus_C'], layer_res['Norm_eucl_res'], label="Norm_eucl_res")
plt.plot(layer_res['Taus_C'], layer_res['svc_Eucl_res'], label="svc_Eucl_res")
plt.plot(layer_res['Taus_C'], layer_res['svc_Norm_eucl_res'], label="svc_Norm_eucl_res")
plt.xlabel("Tau second layer (us)")
plt.ylabel("Recognition rates")
plt.grid(axis = 'y', linestyle = '--', linewidth = 0.5)
plt.title("Classifier performance")
plt.legend()
#%% Fourth (Second cross layer) layer decay search (Mutual info layer)
#First Layer parameters
Tau_T=125
taus = (Tau_T*channel_taus)
input_channels = 32 + 32*use_all_addr
n_features=20
local_tv_length=10
n_input_channels=input_channels
n_batch_files=None
dataset_runs=1
local_layer_parameters = [n_features, local_tv_length, taus,\
n_batch_files, dataset_runs]
Net = GORDONN(n_threads=24, verbose=True, server_mode=False, low_memory_mode=False)
Net.add_layer("Local", local_layer_parameters, n_input_channels)
#Second layer parameters
n_features=64
cross_tv_width=3
taus=20e3
cross_layer_parameters = [n_features, cross_tv_width, taus, n_batch_files,
dataset_runs]
Net.add_layer("Cross", cross_layer_parameters)
#MIG Layers
MI_factor=76
Net.add_layer("MIG", [MI_factor])
#Pool Layer
pool_factor=2
Net.add_layer("Pool", [pool_factor])
#4th Cross layer
n_features=128
cross_tv_width=3
taus=16e3
cross_layer_parameters = [n_features, cross_tv_width, taus, n_batch_files,
dataset_runs]
Net.add_layer("Cross", cross_layer_parameters)
#MLP classifier
Net.layers[-1].mlp_hidden_size=[30]
Net.layers[-1].mlp_learning_rate=9e-5
Net.layers[-1].mlp_minibatchsize = 2042
Net.layers[-1].mlp_epochs = 20
Tau_C_first = np.power(10,np.arange(0.1,4.8,0.1))*20
eucl_res= []
euclnorm_res = []
svc_eucl_res=[]
svc_euclnorm_res = []
mlp_res=[]
for Tau_indx, Tau_C in enumerate(Tau_C_first):
Net.layers[4].taus=Tau_C
if Tau_indx==0:
Net.learn(dataset_train, labels_train, classes)
Net.predict(dataset_test, labels_train, labels_test, classes)
else:
Net.learn(dataset_train, labels_train, classes, rerun_layer=4)
Net.predict(dataset_test, labels_train, labels_test, classes, rerun_layer=4)
Net.layers[-1].train_mlp(Net.layer_dataset_train[-1],labels_train)
mlp_accuracy=Net.layers[-1].test_mlp(Net.layer_dataset_test[-1],labels_test)
print("Histogram accuracy: "+str(Net.layers[4].hist_accuracy))
print("Norm Histogram accuracy: "+str(Net.layers[4].norm_hist_accuracy))
print("SVC Histogram accuracy: "+str(Net.layers[4].svm_hist_accuracy))
print("SVC norm Histogram accuracy: "+str(Net.layers[4].svm_norm_hist_accuracy))
print("mlp Accuracy "+str(mlp_accuracy))
eucl_res.append(Net.layers[4].hist_accuracy)
euclnorm_res.append(Net.layers[4].norm_hist_accuracy)
svc_eucl_res.append(Net.layers[4].svm_hist_accuracy)
svc_euclnorm_res.append(Net.layers[4].svm_norm_hist_accuracy)
mlp_res.append(mlp_accuracy)
#%% Save Layer results
layer_res = {'Eucl_res': eucl_res, 'Norm_eucl_res': euclnorm_res, 'mlp_res': mlp_res,\
'svc_Eucl_res': svc_eucl_res, 'svc_Norm_eucl_res': svc_euclnorm_res,\
'Taus_C' : Tau_C_first}
with open('Results/Decay_search_tmp/Lay_4_MI_test_new.pickle', 'wb') as handle:
pickle.dump(layer_res, handle, protocol=pickle.HIGHEST_PROTOCOL)
#%% Load Layer results
filename = "Lay_4_MI"
with open('Results/Decay_search_tmp/'+str(filename)+'.pickle', 'rb') as handle:
layer_res = pickle.load(handle)
#%% Plot layer 4 results
plt.plot(layer_res['Taus_C'], layer_res['Eucl_res'], label="Eucl_res_MI")
plt.plot(layer_res['Taus_C'], layer_res['Norm_eucl_res'], label="Norm_eucl_res_MI")
plt.plot(layer_res['Taus_C'], layer_res['mlp_res'], label="mlp_res_MI")
plt.plot(layer_res['Taus_C'], layer_res['svc_Eucl_res'], label="svc_Eucl_res_MI")
plt.plot(layer_res['Taus_C'], layer_res['svc_Norm_eucl_res'], label="svc_Norm_eucl_res_MI")
plt.xlabel("Tau second layer (us)")
plt.ylabel("Recognition rates")
plt.grid(axis = 'y', linestyle = '--', linewidth = 0.5)
plt.title("Classifier performance")
plt.legend()
#%% Eight (Second cross layer) layer decay search (Mutual info layer)
#First Layer parameters
Tau_T=125
taus = (Tau_T*channel_taus)
input_channels = 32 + 32*use_all_addr
n_features=20
local_tv_length=10
n_input_channels=input_channels
n_batch_files=None
dataset_runs=1
local_layer_parameters = [n_features, local_tv_length, taus,\
n_batch_files, dataset_runs]
Net = GORDONN(n_threads=24, verbose=True, server_mode=False, low_memory_mode=False)
Net.add_layer("Local", local_layer_parameters, n_input_channels)
#Second layer parameters
n_features=64
cross_tv_width=3
taus=20e3
cross_layer_parameters = [n_features, cross_tv_width, taus, n_batch_files,
dataset_runs]
Net.add_layer("Cross", cross_layer_parameters)
#MIG Layers
MI_factor=76
Net.add_layer("MIG", [MI_factor])
#Pool Layer
pool_factor=2
Net.add_layer("Pool", [pool_factor])
#4th Cross layer
n_features=128
cross_tv_width=3
taus=16e4
cross_layer_parameters = [n_features, cross_tv_width, taus, n_batch_files,
dataset_runs]
Net.add_layer("Cross", cross_layer_parameters)
#MIG Layers
MI_factor=56
Net.add_layer("MIG", [MI_factor])
#Pool Layer
pool_factor=2
Net.add_layer("Pool", [pool_factor])
#7th Cross layer
n_features=128
cross_tv_width=None
taus=16e3
cross_layer_parameters = [n_features, cross_tv_width, taus, n_batch_files,
dataset_runs]
Net.add_layer("Cross", cross_layer_parameters)
#MLP classifier
Net.layers[-1].mlp_hidden_size=[30]
Net.layers[-1].mlp_learning_rate=9e-5
Net.layers[-1].mlp_minibatchsize = 2042
Net.layers[-1].mlp_epochs = 20
Tau_C_first = np.power(10,np.arange(0.1,4.8,0.1))*20
eucl_res= []
euclnorm_res = []
svc_eucl_res=[]
svc_euclnorm_res = []
mlp_res=[]
for Tau_indx, Tau_C in enumerate(Tau_C_first):
Net.layers[7].taus=Tau_C
if Tau_indx==0:
Net.learn(dataset_train, labels_train, classes)
Net.predict(dataset_test, labels_train, labels_test, classes)
else:
Net.learn(dataset_train, labels_train, classes, rerun_layer=7)
Net.predict(dataset_test, labels_train, labels_test, classes, rerun_layer=7)
Net.layers[-1].train_mlp(Net.layer_dataset_train[-1],labels_train)
mlp_accuracy=Net.layers[-1].test_mlp(Net.layer_dataset_test[-1],labels_test)
print("Histogram accuracy: "+str(Net.layers[7].hist_accuracy))
print("Norm Histogram accuracy: "+str(Net.layers[7].norm_hist_accuracy))
print("SVC Histogram accuracy: "+str(Net.layers[7].svm_hist_accuracy))
print("SVC norm Histogram accuracy: "+str(Net.layers[7].svm_norm_hist_accuracy))
print("mlp Accuracy "+str(mlp_accuracy))
eucl_res.append(Net.layers[7].hist_accuracy)
euclnorm_res.append(Net.layers[7].norm_hist_accuracy)
svc_eucl_res.append(Net.layers[7].svm_hist_accuracy)
svc_euclnorm_res.append(Net.layers[7].svm_norm_hist_accuracy)
mlp_res.append(mlp_accuracy)
#%% Save Layer results
layer_res = {'Eucl_res': eucl_res, 'Norm_eucl_res': euclnorm_res, 'mlp_res': mlp_res,\
'svc_Eucl_res': svc_eucl_res, 'svc_Norm_eucl_res': svc_euclnorm_res,\
'Taus_C' : Tau_C_first}
with open('Results/Decay_search_tmp/Lay_7_MI_test_full_space.pickle', 'wb') as handle:
pickle.dump(layer_res, handle, protocol=pickle.HIGHEST_PROTOCOL)
#%% Load Layer results
filename = "Lay_7_MI_test"
with open('Results/Decay_search_tmp/'+str(filename)+'.pickle', 'rb') as handle:
layer_res = pickle.load(handle)
#%% Plot layer 7 results
plt.plot(layer_res['Taus_C'], layer_res['Eucl_res'], label="Eucl_res_MI")
plt.plot(layer_res['Taus_C'], layer_res['Norm_eucl_res'], label="Norm_eucl_res_MI")
plt.plot(layer_res['Taus_C'], layer_res['mlp_res'], label="mlp_res_MI")
plt.plot(layer_res['Taus_C'], layer_res['svc_Eucl_res'], label="svc_Eucl_res_MI")
plt.plot(layer_res['Taus_C'], layer_res['svc_Norm_eucl_res'], label="svc_Norm_eucl_res_MI")
plt.xlabel("Tau second layer (us)")
plt.ylabel("Recognition rates")
plt.grid(axis = 'y', linestyle = '--', linewidth = 0.5)
plt.title("Classifier performance")
plt.legend()
#%% Sixth (3th cross layer) layer decay search
#First Layer parameters
Tau_T=125
taus = (Tau_T*channel_taus)
input_channels = 32 + 32*use_all_addr
n_features=20
local_tv_length=10
n_input_channels=input_channels
n_batch_files=None
dataset_runs=1
local_layer_parameters = [n_features, local_tv_length, n_input_channels, taus,\
n_batch_files, dataset_runs]
Net = GORDONN(n_threads=n_threads, verbose=True, server_mode=True)
Net.add_layer("Local", local_layer_parameters)
#Second layer parameters
n_input_features=n_features
n_input_channels=32
n_features=64
# n_features=32
cross_tv_width=3
taus=20e3
cross_layer_parameters = [n_features, cross_tv_width,
n_input_channels, taus,
n_input_features, n_batch_files,
dataset_runs]
Net.add_layer("Cross", cross_layer_parameters)
#Pool Layer
n_input_channels=32
pool_factor=2
Net.add_layer("Pool", [n_input_channels, pool_factor])
#Third layer parameters
n_input_features=n_features
n_input_channels=16
n_features=128
# n_features=64
cross_tv_width=5
taus=1e6
cross_layer_parameters = [n_features, cross_tv_width,
n_input_channels, taus,
n_input_features, n_batch_files,
dataset_runs]
Net.add_layer("Cross", cross_layer_parameters)
#Pool Layer
n_input_channels=16
pool_factor = 4
Net.add_layer("Pool", [n_input_channels, pool_factor])
#6th Cross layer
n_input_features=n_features
n_input_channels=4
n_features=256
cross_tv_width=None
taus=20e3
cross_layer_parameters = [n_features, cross_tv_width,
n_input_channels, taus,
n_input_features, n_batch_files,
dataset_runs]
Net.add_layer("Cross", cross_layer_parameters)
Tau_C_first = np.power(10,np.arange(0.1,4.8,0.1))*20
eucl_res= []
euclnorm_res = []
svc_eucl_res=[]
svc_euclnorm_res = []
for Tau_indx, Tau_C in enumerate(Tau_C_first):
Net.layers[5].taus=Tau_C
if Tau_indx==0:
Net.learn(dataset_train, labels_train, classes)
Net.predict(dataset_test, labels_train, labels_test, classes)
else:
Net.learn(dataset_train, labels_train, classes, rerun_layer=5)
Net.predict(dataset_test, labels_train, labels_test, classes, rerun_layer=5)
print("Histogram accuracy: "+str(Net.layers[5].hist_accuracy))
print("Norm Histogram accuracy: "+str(Net.layers[5].norm_hist_accuracy))
print("SVC Histogram accuracy: "+str(Net.layers[5].svm_hist_accuracy))
print("SVC norm Histogram accuracy: "+str(Net.layers[5].svm_norm_hist_accuracy))
eucl_res.append(Net.layers[5].hist_accuracy)
euclnorm_res.append(Net.layers[5].norm_hist_accuracy)
svc_eucl_res.append(Net.layers[5].svm_hist_accuracy)
svc_euclnorm_res.append(Net.layers[5].svm_norm_hist_accuracy)
#%% Save Layer results
layer_res = {'Eucl_res': eucl_res, 'Norm_eucl_res': euclnorm_res,\
'svc_Eucl_res': svc_eucl_res, 'svc_Norm_eucl_res': svc_euclnorm_res,\
'Taus_C' : Tau_C_first}
with open('Results/Decay_search_tmp/Lay_6_final.pickle', 'wb') as handle:
pickle.dump(layer_res, handle, protocol=pickle.HIGHEST_PROTOCOL)
#%% Load Layer results
filename = "Lay_6_final"
with open('Results/Decay_search_tmp/'+str(filename)+'.pickle', 'rb') as handle:
layer_res = pickle.load(handle)
#%% Plot layer 6 results
plt.plot(layer_res['Taus_C'], layer_res['Eucl_res'], label="Eucl_res")
plt.plot(layer_res['Taus_C'], layer_res['Norm_eucl_res'], label="Norm_eucl_res")
plt.plot(layer_res['Taus_C'], layer_res['svc_Eucl_res'], label="svc_Eucl_res")
plt.plot(layer_res['Taus_C'], layer_res['svc_Norm_eucl_res'], label="svc_Norm_eucl_res")
plt.xlabel("Tau second layer (us)")
plt.ylabel("Recognition rates")
plt.grid(axis = 'y', linestyle = '--', linewidth = 0.5)
plt.title("Classifier performance")
plt.legend()