forked from yijingru/BBAVectors-Oriented-Object-Detection
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
executable file
·205 lines (181 loc) · 8.39 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
import torch
import torch.nn as nn
import os
import numpy as np
import loss
import cv2
import func_utils
from tqdm import tqdm
from datasets.dataset_dota import DOTA
from datasets.dataset_dota import merg_dataset
def collater(data):
out_data_dict = {}
for name in data[0]:
out_data_dict[name] = []
for sample in data:
for name in sample:
out_data_dict[name].append(torch.from_numpy(sample[name]))
for name in out_data_dict:
out_data_dict[name] = torch.stack(out_data_dict[name], dim=0)
return out_data_dict
class TrainModule(object):
def __init__(self, dataset, num_classes, model, decoder, down_ratio):
torch.manual_seed(317)
self.dataset = dataset
self.dataset_phase = {'dota': ['train'],
'hrsc': ['train', 'test']}
self.num_classes = num_classes
self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
self.model = model
self.decoder = decoder
self.down_ratio = down_ratio
def save_model(self, path, epoch, model, optimizer):
if isinstance(model, torch.nn.DataParallel):
state_dict = model.module.state_dict()
else:
state_dict = model.state_dict()
torch.save({
'epoch': epoch,
'model_state_dict': state_dict,
'optimizer_state_dict': optimizer.state_dict(),
# 'loss': loss
}, path)
def load_model(self, model, optimizer, resume, strict=True):
checkpoint = torch.load(resume, map_location=lambda storage, loc: storage)
print('loaded weights from {}, epoch {}'.format(resume, checkpoint['epoch']))
state_dict_ = checkpoint['model_state_dict']
state_dict = {}
for k in state_dict_:
if k.startswith('module') and not k.startswith('module_list'):
state_dict[k[7:]] = state_dict_[k]
else:
state_dict[k] = state_dict_[k]
model_state_dict = model.state_dict()
if not strict:
for k in state_dict:
if k in model_state_dict:
if state_dict[k].shape != model_state_dict[k].shape:
print('Skip loading parameter {}, required shape{}, ' \
'loaded shape{}.'.format(k, model_state_dict[k].shape, state_dict[k].shape))
state_dict[k] = model_state_dict[k]
else:
print('Drop parameter {}.'.format(k))
for k in model_state_dict:
if not (k in state_dict):
print('No param {}.'.format(k))
state_dict[k] = model_state_dict[k]
model.load_state_dict(state_dict, strict=False)
optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
for state in optimizer.state.values():
for k, v in state.items():
if isinstance(v, torch.Tensor):
state[k] = v.cuda()
epoch = checkpoint['epoch']
# loss = checkpoint['loss']
return model, optimizer, epoch
def train_network(self, args):
self.optimizer = torch.optim.Adam(self.model.parameters(), args.init_lr)
self.scheduler = torch.optim.lr_scheduler.ExponentialLR(self.optimizer, gamma=0.96, last_epoch=-1)
save_path = 'weights_'+args.dataset
start_epoch = 1
# add resume part for continuing training when break previously, 10-16-2020
if args.resume_train:
self.model, self.optimizer, start_epoch = self.load_model(self.model,
self.optimizer,
args.resume_train,
strict=True)
# end
if not os.path.exists(save_path):
os.mkdir(save_path)
if args.ngpus>1:
if torch.cuda.device_count() > 1:
print("Let's use", torch.cuda.device_count(), "GPUs!")
# dim = 0 [30, xxx] -> [10, ...], [10, ...], [10, ...] on 3 GPUs
self.model = nn.DataParallel(self.model)
self.model.to(self.device)
criterion = loss.LossAll()
print('Setting up data...')
dataset_module = self.dataset[args.dataset]
modes=['augment','original','noisy']
dset_total=[]
for mode_selected in modes:
dsets = {x: dataset_module(data_dir=args.data_dir,
phase=x,
mode=mode_selected,
input_h=args.input_h,
input_w=args.input_w,
down_ratio=self.down_ratio)
for x in self.dataset_phase[args.dataset]}
dset_total.append(dsets)
merged=merg_dataset(dset_total[0]['train'],dset_total[1]['train'],dset_total[2]['train'])
merged_dataset={'train':merged}
dsets_loader = {}
dsets_loader['train'] = torch.utils.data.DataLoader(merged_dataset={'train':merged},
batch_size=args.batch_size,
shuffle=True,
num_workers=args.num_workers,
pin_memory=True,
drop_last=True,
collate_fn=collater)
print('Starting training...')
train_loss = []
ap_list = []
for epoch in range(start_epoch, args.num_epoch+1):
print('-'*10)
print('Epoch: {}/{} '.format(epoch, args.num_epoch))
epoch_loss = self.run_epoch(phase='train',
data_loader=dsets_loader['train'],
criterion=criterion)
train_loss.append(epoch_loss)
self.scheduler.step(epoch)
np.savetxt(os.path.join(save_path, 'train_loss.txt'), train_loss, fmt='%.6f')
if epoch % 5 == 0 or epoch > 20:
self.save_model(os.path.join(save_path, 'model_{}.pth'.format(epoch)),
epoch,
self.model,
self.optimizer)
if 'test' in self.dataset_phase[args.dataset] and epoch%5==0:
mAP = self.dec_eval(args, dsets['test'])
ap_list.append(mAP)
np.savetxt(os.path.join(save_path, 'ap_list.txt'), ap_list, fmt='%.6f')
self.save_model(os.path.join(save_path, 'model_last.pth'),
epoch,
self.model,
self.optimizer)
def run_epoch(self, phase, data_loader, criterion):
if phase == 'train':
self.model.train()
else:
self.model.eval()
running_loss = 0.
for data_dict in tqdm(data_loader):
for name in data_dict:
data_dict[name] = data_dict[name].to(device=self.device, non_blocking=True)
if phase == 'train':
self.optimizer.zero_grad()
with torch.enable_grad():
pr_decs = self.model(data_dict['input'])
loss = criterion(pr_decs, data_dict)
loss.backward()
self.optimizer.step()
else:
with torch.no_grad():
pr_decs = self.model(data_dict['input'])
loss = criterion(pr_decs, data_dict)
running_loss += loss.item()
epoch_loss = running_loss / len(data_loader)
print('{} loss: {}'.format(phase, epoch_loss))
return epoch_loss
def dec_eval(self, args, dsets):
result_path = 'result_'+args.dataset
if not os.path.exists(result_path):
os.mkdir(result_path)
self.model.eval()
func_utils.write_results(args,
self.model,dsets,
self.down_ratio,
self.device,
self.decoder,
result_path)
ap = dsets.dec_evaluation(result_path)
return ap