-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsynthetic_feedback.py
299 lines (250 loc) · 8.63 KB
/
synthetic_feedback.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
"""
ALMoST
Copyright (c) 2023-present NAVER Cloud Corp.
Apache-2.0
"""
import os
import re
import json
import argparse
import itertools
import numpy as np
from tqdm import tqdm
from utils import get_logger
from typing import List, Dict, Optional
from collections import Counter
from generator import PromptGenerator, PromptedResponseGenerator, SamplingConfig
logger = get_logger(__name__)
class SyntheticRanker:
def __init__(self, rubric: List[str]):
self.rubric = rubric
self.set_rank()
def load_dataset(self, target_dir: str):
def flatten_list(lst):
flatten = []
for l in lst:
if isinstance(l, list):
flatten.extend(l)
else:
flatten.append(l)
return flatten
prompts = open(f"{target_dir}/prompts.txt", "r", encoding="utf-8").read().splitlines()
config_names = []
all_responses = []
for i, config_name in enumerate(flatten_list(self.rubric)):
responses = json.load(open(f"{target_dir}/{config_name}.json", "r", encoding="utf-8"))
assert len(prompts) == len(responses)
all_responses.append(responses)
config_names.append(config_name)
all_responses = list(zip(*all_responses))
instances = []
for idx in range(len(prompts)):
p = prompts[idx]
dic = {
'prompt': p
}
for i, r in enumerate(all_responses[idx]):
dic[config_names[i]] = r
instances.append(dic)
return instances
def set_rank(self):
synthetic_ranking = {}
rank = 0
for r in self.rubric:
if isinstance(r, list):
for rr in r:
synthetic_ranking[rr] = rank
else:
synthetic_ranking[r] = rank
rank += 1
self.synthetic_ranking = synthetic_ranking
def get_comparison(self, instance: dict) -> List[dict]:
"""
Each instance is dictionary
It includes input 'prompt' and
candidate responses (value) with corresponding model_name as a key.
"""
prompt = None
candidates = []
responses = []
ranking = []
for k, v in instance.items():
if k == "prompt":
prompt = v
continue
if not v.strip() or v == "BAD":
continue
candidates.append(k)
responses.append(v)
ranking.append(self.synthetic_ranking.get(k))
gathered = list(zip(candidates, responses, ranking))
gathered = sorted(gathered, key=lambda x: x[-1])
if len(gathered) < 2:
return []
length_variance = self.check_length(instance)
ranking_instances = []
checked = []
rank_checked = []
for combi in itertools.combinations(gathered, 2):
if combi[0][0] in checked:
continue
if combi[0][-1] in rank_checked:
continue
if len(combi[0][1]) < len(combi[1][1]) and not length_variance[combi[0][0]]:
continue
if combi[0][-1] == combi[1][-1]:
continue
dic = {
"prompt": prompt,
"chosen": combi[0][1],
"rejected": combi[1][1],
"meta": f"{combi[0][0]}-vs-{combi[1][0]}"
}
checked.append(combi[0][0])
rank_checked.append(combi[0][-1])
ranking_instances.append(dic)
return ranking_instances
def check_length(self, instance: dict) -> dict:
lengths = []
for k, v in instance.items():
if k == "prompt":
continue
if v == "BAD":
continue
lengths.append(len(v))
avg_length = np.mean(lengths)
std_length = np.std(lengths)
length_variance = {}
for k, v in instance.items():
if k == "prompt":
continue
length_variance[k] = True if len(v) >= (avg_length - std_length / 2) else False
return length_variance
def prompt_generation(
model_name_or_path: str,
prompt_file_path: str,
output_dir: str,
num_generation: int = 100,
batch_size: int = 4,
n_gpu: int = 1,
use_vllm: bool = True,
cache_dir: str = None
) -> None:
config = SamplingConfig(
prompt_file_path=prompt_file_path,
model_name_or_path=model_name_or_path,
n_shot=10,
batch_size=batch_size,
temperature=1.2,
top_p=0.9,
max_new_tokens=64,
prompt_splitter="\n",
static_prompt=False,
use_vllm=True,
n_gpu=n_gpu,
cache_dir=cache_dir
)
generator = PromptGenerator(config)
generator.load_model()
prompts = generator.generate(num_generation)
with open(f"{output_dir}/prompts.txt", "w", encoding="utf-8") as f:
for prompt in prompts:
f.write(prompt + "\n")
def response_generation(
prompts: List[str],
model_name_or_path: str,
prompt_file_path: str,
n_shot: int,
output_dir: str,
batch_size: int =4,
n_gpu: int = 1,
use_vllm: bool = True,
cache_dir: str = None
) -> None:
config = SamplingConfig(
prompt_file_path=prompt_file_path,
model_name_or_path=model_name_or_path,
n_shot=n_shot,
batch_size=batch_size,
temperature=1.0,
top_p=0.9,
max_new_tokens=768 if "Faithful" in prompt_file_path else 384,
prompt_splitter="\n\n-----",
static_prompt=True,
use_vllm=True,
n_gpu=n_gpu,
cache_dir=cache_dir
)
config_name = model_name_or_path.split("/")[-1].lower() + \
"-" + prompt_file_path.split("/")[-1].replace("_prompt.txt", "") + \
f"-{n_shot}shot"
generator = PromptedResponseGenerator(config)
generator.load_model()
responses = generator.generate(prompts)
with open(f"{output_dir}/{config_name}.json", "w", encoding="utf-8") as f:
json.dump(responses, f)
def construct_synthetic_comparison(
output_dir: str,
rubric: List[str]
):
ranker = SyntheticRanker(rubric)
instances = ranker.load_dataset(output_dir)
comparison_dataset = []
for instance in instances:
comparison = ranker.get_comparison(instance)
comparison_dataset.extend(comparison)
with open(f"{output_dir}/comparison.json", "w", encoding="utf-8") as f:
json.dump(comparison_dataset, f)
def main(args):
if not os.path.exists(args.output_dir):
os.makedirs(args.output_dir, exist_ok=True)
if args.mode in ["prompt_generation", "pg"]:
prompt_generation(
args.model_name_or_path,
args.prompt_file_path,
args.output_dir,
args.num_generation,
args.batch_size,
args.n_gpu,
args.use_vllm,
args.cache_dir
)
if args.mode in ["response_generation", "rg"]:
with open(f"{args.output_dir}/prompts.txt", "r", encoding="utf-8") as f:
prompts = f.read().splitlines()
response_generation(
prompts,
args.model_name_or_path,
args.prompt_file_path,
args.n_shot,
args.output_dir,
args.batch_size,
args.n_gpu,
args.use_vllm,
args.cache_dir
)
if args.mode == "cs":
construct_synthetic_comparison(
args.output_dir,
args.rubric
)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--output_dir', type=str)
parser.add_argument("--mode",
help="The mode should be one of ['pg', 'rg', 'cs'].",
type=str,
required=True)
parser.add_argument('--model_name_or_path', type=str)
parser.add_argument('--prompt_file_path', type=str)
parser.add_argument('--n_shot', type=int, default=3)
parser.add_argument('--batch_size', type=int, default=4)
parser.add_argument('--num_generation', type=int, default=100)
parser.add_argument('--n_gpu', type=int, default=1)
parser.add_argument('--rubric', nargs="+", default=[])
parser.add_argument('--cache_dir', type=str)
parser.add_argument('--use_hf', action="store_true", default=False)
args = parser.parse_args()
args.use_vllm = False if args.use_hf else True
assert args.mode in ['pg', 'rg', 'cs']
main(args)