-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathGS_Model.py
231 lines (183 loc) · 8.63 KB
/
GS_Model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
'''
LEW-20210-1, Python Ground Station for a Core Flight System with CCSDS Electronic Data Sheets Support
Copyright (c) 2020 United States Government as represented by
the Administrator of the National Aeronautics and Space Administration.
All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
'''
'''
cFS-GroundStation Model:
This module contains classes and functions to handle the various sets of data within
the cFS-GroundStation. This includes structures to hold incoming telemetry data,
disctionaries and lists of the instances, topics, subcommands, and telemetry types.
Finally, several functions are used to generate human readable text string to output
in the viewer based on raw or decoded messages.
'''
import time
import GS_Controller
def HexString(string, hex_per_line):
'''
Generates a human readable hex dump of a hex string
Inputs:
string - hex representation of a bytes string
hex_per_line - number of bytes to appear on each line
Outputs:
hex_string - Human readable string of the hex dump
'''
hex_string = ''
count = 0
for i in range(0, len(string), 2):
hex_string += "0x{}{} ".format(string[i].upper(), string[i+1].upper())
count += 1
if count % hex_per_line == 0:
hex_string += '\n'
return hex_string
def TlmDisplayString(eds_db, base_object, base_name, message=''):
'''
Generates a string to display in the telemetry log that shows the contents
of a telemetry message object
Inputs:
eds_db - EDS database
base_object - the decoded EDS telemetry object
base_name - the base EDS name of the telemetry object
message - string used in the recursion to keep track of the object's structure
'''
result = message
# Array display string
if (eds_db.IsArray(base_object)):
for i in range(len(base_object)):
result = TlmDisplayString(eds_db, base_object[i], f"{base_name}[{i}]", result)
# Container display string
elif (eds_db.IsContainer(base_object)):
for item in base_object:
result = TlmDisplayString(eds_db, item[1], f"{base_name}.{item[0]}", result)
# Everything else (number, enumeration, string, etc.)
else:
result += '{:<60} = {}\n'.format(base_name, base_object)
return result
class DataModel(object):
'''
The DataModel class contains strcutres related to the data saved in the cFS-Groundstation
- Stores dictionaries of Instances, Topics, Subcommands, and Telemetry Types
- Stores an array of raw messages based on Telmetry Type
'''
def __init__(self):
self.instance_chooser = "-- Instance --"
self.topic_chooser = "-- Topic --"
self.subcommand_chooser = "-- Subcommand --"
self.default_enum_label = "-- Value --"
self.tlm_chooser = "-- Instance:Topic --"
self.instance_dict = {}
self.telecommand_topic_dict = {}
self.telemetry_topic_dict = {}
self.subcommand_dict = {}
self.instance_keys = []
self.telecommand_topic_keys = []
self.telemetry_topic_keys = []
self.subcommand_keys = []
self.instance_values = []
self.telemetry_topic_values = []
self.tlm_data = {}
self.tlm_data_keys = []
def InitializeLists(self):
'''
Once the EdsDb and IntfDb have been initialized in the Controller, this function can
be called to initialize the various dictionaries and key lists.
'''
self.instance_dict = GS_Controller.control.GetInstances()
self.telecommand_topic_dict = GS_Controller.control.GetTelecommandTopics()
self.telemetry_topic_dict = GS_Controller.control.GetTelemetryTopics()
self.subcommand_dict = GS_Controller.control.GetSubcommands(0)
self.instance_keys = list(self.instance_dict.keys())
self.telecommand_topic_keys = list(self.telecommand_topic_dict.keys())
self.telemetry_topic_keys = list(self.telemetry_topic_dict.keys())
self.subcommand_keys = list(self.subcommand_dict.keys())
self.instance_values = list(self.instance_dict.values())
self.telemetry_topic_values = list(self.telemetry_topic_dict.values())
def UpdateSubcommands(self, topic):
'''
When a new topic is selected in the viewer this function updates the subcommand
disctionary and key list with new information (if available)
Inputs:
topic - The selected Telecommand topic
'''
self.subcommand_dict = GS_Controller.control.GetSubcommands(topic)
self.subcommand_keys = list(self.subcommand_dict.keys())
def AddTlm(self, eds_db, host, datagram, decode_output):
'''
Generates a telemetry indicator string based on the instance and topic names.
Sorts the raw message into the associated data array (or creates one if it doesn't exist)
Display strings are generated and sent to the Viewer to update in the display
Inputs:
eds_db - EDS Database
host - Information where the telemetry message came from
datagram - Raw telemetry message as a bytes string
decode_output - Tuple containing the output from control.DecodeMessage:
topic_id - The Topic ID associated with the telemetry message
eds_entry - The EDS function to create an object associated with the telemetry message
eds_object - The decoded EDS object
'''
topic_id = decode_output[0]
eds_entry = decode_output[1]
eds_object = decode_output[2]
topic_name = self.telemetry_topic_keys[self.telemetry_topic_values.index(topic_id)]
try:
instance_index = self.instance_values.index(int(eds_object.CCSDS.ApidQ.SubsystemId))
instance_name = self.instance_keys[instance_index]
tlm_instance_topic = f"{instance_name}:{topic_name}"
except AttributeError:
tlm_instance_topic = f"{topic_name}"
if tlm_instance_topic in self.tlm_data:
self.tlm_data[tlm_instance_topic].append(datagram)
new_tlm_type = None
else:
self.tlm_data[tlm_instance_topic] = [datagram]
self.tlm_data_keys = list(self.tlm_data.keys())
new_tlm_type = tlm_instance_topic
disp_start = f"Telemetry Packet From: {host[0]}:UDP {host[1]}, {8*len(datagram)} bits :\n"
message_hex_dump = HexString(datagram.hex(), 16)
topic_str = f"Instance:Topic = {tlm_instance_topic}\n"
object_str = TlmDisplayString(eds_db, eds_object, eds_entry.Name)
tlm_message = disp_start + message_hex_dump + '\n' + topic_str + object_str + '\n'
return new_tlm_type, tlm_message
def SaveTlmType(self, tlm_choice):
'''
Writes the raw_messages of a given telemetry indicator string to a time stamped file.
Inputs:
tlm_choice - the chosen telemetry indicator string
Outputs:
binary file based on the tlm_choice and the time stamp.
First the length of each packet is written as a 4-byte unsigned integer, then
raw packets are written to the file.
Packets that are written to the file are cleared from the data structure.
'''
num_tlm_messages = len(self.tlm_data[tlm_choice])
tlm_choice_edited = tlm_choice.replace('/', '_')
tlm_choice_edited = tlm_choice_edited.replace(':', '_')
if num_tlm_messages != 0:
time_str = time.strftime("%Y-%m-%d__%H_%M_%S", time.gmtime())
filename = f"output/{tlm_choice_edited}__{time_str}.bin"
filename.replace(':', '_')
fout = open(filename, 'wb')
tlm_length = len(self.tlm_data[tlm_choice][0])
fout.write((tlm_length).to_bytes(4, byteorder='big', signed=False))
while num_tlm_messages > 0:
message = self.tlm_data[tlm_choice].pop(0)
fout.write(message)
num_tlm_messages -= 1
fout.close()
def SaveAllTlm(self):
'''
Loops over all the telemetry indicator strings and calls SaveTlm for each one
'''
for tlm_choice in self.tlm_data_keys:
self.SaveTlmType(tlm_choice)
data = DataModel()