-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathstm_sts_from_wfn.py
executable file
·288 lines (246 loc) · 10.1 KB
/
stm_sts_from_wfn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
#!/usr/bin/env python
import argparse
import sys
import time
import numpy as np
from mpi4py import MPI
import cp2k_spm_tools.cp2k_grid_orbitals as cgo
import cp2k_spm_tools.cp2k_stm_sts as css
from cp2k_spm_tools import common, cube_utils
from cp2k_spm_tools.cube import Cube
ang_2_bohr = 1.0 / 0.52917721067
hart_2_ev = 27.21138602
comm = MPI.COMM_WORLD
mpi_rank = comm.Get_rank()
mpi_size = comm.Get_size()
parser = argparse.ArgumentParser(description="Puts the CP2K orbitals on grid and calculates STM.")
### ----------------------------------------------------------------------
### Input and output files
parser.add_argument("--cp2k_input_file", metavar="FILENAME", required=True, help="CP2K input of the SCF calculation.")
parser.add_argument("--basis_set_file", metavar="FILENAME", required=True, help="File containing the used basis sets.")
parser.add_argument("--xyz_file", metavar="FILENAME", required=True, help=".xyz file containing the geometry.")
parser.add_argument(
"--wfn_file", metavar="FILENAME", required=True, help="Restart file containing the final wavefunction."
)
parser.add_argument(
"--hartree_file", metavar="FILENAME", required=True, help="Cube file containing the hartree potential."
)
parser.add_argument(
"--output_file", metavar="FILENAME", default="./stm.npz", help="File, where to save the STM/STS output"
)
parser.add_argument(
"--orb_output_file", metavar="FILENAME", default="./orb.npz", help="File, where to save the orbital output"
)
### ----------------------------------------------------------------------
### Parameters for putting orbitals on grid
parser.add_argument("--eval_region", type=str, nargs=6, metavar="X", required=True, help=common.eval_region_description)
parser.add_argument("--dx", type=float, metavar="DX", required=True, help="Spatial step for the grid (angstroms).")
parser.add_argument(
"--eval_cutoff",
type=float,
metavar="D",
default=16.0,
help=("Size of the region around the atom where each orbital is evaluated (only used for 'G' region)."),
)
parser.add_argument(
"--extrap_extent",
type=float,
metavar="H",
default=4.0,
required=True,
help="The extent of the extrapolation region. (angstrom)",
)
### ----------------------------------------------------------------------
### Gas phase analysis parameters - image at orbital energies
parser.add_argument("--n_homo", type=int, metavar="N", default=0, help="Number of HOMO orbitals to analyse.")
parser.add_argument("--n_lumo", type=int, metavar="N", default=0, help="Number of LUMO orbitals to analyse.")
parser.add_argument(
"--orb_heights",
nargs="*",
type=float,
metavar="H",
help="List of heights for constant height orbital pictures (wrt topmost atom).",
)
parser.add_argument(
"--orb_isovalues",
nargs="*",
type=float,
metavar="C",
help="List of charge density isovalues for constant current orbital pictures",
)
parser.add_argument(
"--orb_fwhms",
nargs="*",
type=float,
default=[0.02],
help="Full width at half maximum for orbital STS gaussian broadening. (eV)",
)
### ----------------------------------------------------------------------
### Slab system analysis parameters - images at specified energies
###
### Option 1: continuous selection
parser.add_argument(
"--energy_range",
nargs=3,
type=float,
metavar="E",
help="Selection of STM/STS energy values based on a range: min, max and differential.",
)
###
### Option 2: discrete selection
parser.add_argument(
"--energies", nargs="*", type=float, metavar="E", help="Discrete energies where to run the STM/STS."
)
### ----------------------------------------------------------------------
### Parameters for STM/STS series
parser.add_argument(
"--heights",
nargs="*",
type=float,
metavar="H",
help="List of heights for constant height STM pictures (wrt topmost atom).",
)
parser.add_argument(
"--isovalues",
nargs="*",
type=float,
metavar="C",
help="List of charge density isovalues for constant current STM pictures.",
)
parser.add_argument(
"--fwhms", nargs="*", type=float, default=[0.1], help="Full width at half maximum for STS gaussian broadening. (eV)"
)
### ----------------------------------------------------------------------
### P - tip ratio list
parser.add_argument(
"--p_tip_ratios",
nargs="+",
type=float,
metavar="P",
default=[0.0],
help=("List of p character of the STM tip: 0.0 correspondsto fully s-type and 1.0 to fully p-type tip"),
)
### ----------------------------------------------------------------------
time0 = time.time()
### ------------------------------------------------------
### Parse args for only one rank to suppress duplicate stdio
### ------------------------------------------------------
args = None
args_success = False
try:
if mpi_rank == 0:
args = parser.parse_args()
args_success = True
finally:
args_success = comm.bcast(args_success, root=0)
if not args_success:
print(mpi_rank, "exiting")
exit(0)
args = comm.bcast(args, root=0)
### ------------------------------------------------------
### Energy values for STM/STS
### ------------------------------------------------------
if args.energies is not None:
e_arr = np.array(args.energies)
elif args.energy_range is not None:
emin, emax, de = args.energy_range
e_arr = np.arange(emin, emax + de / 2, de)
else:
e_arr = None
max_fwhm = np.max(args.fwhms)
if e_arr is not None:
sel_emin = np.min(e_arr) - 2.0 * max_fwhm
sel_emax = np.max(e_arr) + 2.0 * max_fwhm
else:
sel_emin = None
sel_emax = None
### ------------------------------------------------------
### Evaluate orbitals on the real-space grid
### ------------------------------------------------------
cp2k_grid_orb = cgo.Cp2kGridOrbitals(mpi_rank, mpi_size, mpi_comm=comm, single_precision=True)
cp2k_grid_orb.read_cp2k_input(args.cp2k_input_file)
cp2k_grid_orb.read_xyz(args.xyz_file)
cp2k_grid_orb.center_atoms_to_cell()
cp2k_grid_orb.read_basis_functions(args.basis_set_file)
cp2k_grid_orb.load_restart_wfn_file(args.wfn_file, emin=sel_emin, emax=sel_emax, n_occ=args.n_homo, n_virt=args.n_lumo)
print("R%d/%d: loaded wfn, %.2fs" % (mpi_rank, mpi_size, (time.time() - time0)))
sys.stdout.flush()
time1 = time.time()
eval_reg = common.parse_eval_region_input(args.eval_region, cp2k_grid_orb.ase_atoms, cp2k_grid_orb.cell)
# --------
# Make sure extrap extent is compatible with heights
atoms_max_z = np.max(cp2k_grid_orb.ase_atoms.positions[:, 2])
eval_z_above_atoms = eval_reg[2][1] - atoms_max_z
extrap_extent = args.extrap_extent
for hs in [args.orb_heights, args.heights]:
if hs is not None:
if np.max(hs) - eval_z_above_atoms > extrap_extent:
print("Increasing extrap. extent to be compatible with heights.")
extrap_extent = np.max(hs) - eval_z_above_atoms
# --------
cp2k_grid_orb.calc_morbs_in_region(
args.dx,
x_eval_region=eval_reg[0],
y_eval_region=eval_reg[1],
z_eval_region=eval_reg[2],
pbc=(True, True, False),
reserve_extrap=extrap_extent,
eval_cutoff=args.eval_cutoff,
)
print("R%d/%d: evaluated wfn, %.2fs" % (mpi_rank, mpi_size, (time.time() - time1)))
sys.stdout.flush()
time1 = time.time()
### ------------------------------------------------------
### Extrapolate orbitals
### ------------------------------------------------------
hart_cube = Cube()
hart_cube.read_cube_file(args.hartree_file)
extrap_plane_z = eval_reg[2][1] / ang_2_bohr - np.max(cp2k_grid_orb.ase_atoms.positions[:, 2])
hart_plane = hart_cube.get_plane_above_topmost_atom(extrap_plane_z) - cp2k_grid_orb.ref_energy / hart_2_ev
cp2k_grid_orb.extrapolate_morbs(hart_plane=hart_plane)
print("R%d/%d: extrapolated wfn, %.2fs" % (mpi_rank, mpi_size, (time.time() - time1)))
sys.stdout.flush()
time1 = time.time()
### ------------------------------------------------------
### Calculate the ionization potential (just for output)
### ------------------------------------------------------
if mpi_rank == 0:
# NB: currently only accurate for isolated molecules
if cp2k_grid_orb.nspin == 1:
homo_en = cp2k_grid_orb.global_morb_energies[0][cp2k_grid_orb.i_homo_glob[0]]
else:
homo_en = np.max(
[
cp2k_grid_orb.global_morb_energies[0][cp2k_grid_orb.i_homo_glob[0]],
cp2k_grid_orb.global_morb_energies[1][cp2k_grid_orb.i_homo_glob[1]],
]
)
ion_pot = cube_utils.find_vacuum_level_naive(hart_cube) - (homo_en + cp2k_grid_orb.ref_energy)
print("IONIZATION POTENIAL (eV): %.6f (accurate only for isolated molecules)" % ion_pot)
sys.stdout.flush()
### ------------------------------------------------------
### Set up STM object
### ------------------------------------------------------
stm = css.STM(mpi_comm=comm, cp2k_grid_orb=cp2k_grid_orb, p_tip_ratios=args.p_tip_ratios)
stm.gather_global_energies()
stm.divide_by_space()
### ------------------------------------------------------
### Run STM-STS analysis for orbitals
### ------------------------------------------------------
orb_heights = args.orb_heights if args.orb_heights is not None else []
orb_isovalues = args.orb_isovalues if args.orb_isovalues is not None else []
orb_fwhms = args.orb_fwhms if args.orb_fwhms is not None else []
if len(orb_fwhms) != 0 and (len(orb_heights) != 0 or len(orb_isovalues) != 0):
orbital_list = list(range(-args.n_homo + 1, args.n_lumo + 1))
stm.create_orb_series(orbital_list, orb_heights, orb_isovalues, orb_fwhms)
stm.collect_and_save_orb_maps(path=args.orb_output_file)
### ------------------------------------------------------
### Run STM-STS analysis for general energies
### ------------------------------------------------------
heights = args.heights if args.heights is not None else []
isovalues = args.isovalues if args.isovalues is not None else []
fwhms = args.fwhms if args.fwhms is not None else []
if e_arr is not None and len(fwhms) != 0 and (len(heights) != 0 or len(isovalues) != 0):
stm.calculate_stm_maps(fwhms, isovalues, heights, e_arr)
stm.collect_and_save_stm_maps(path=args.output_file)
print("R%d/%d: finished, total time: %.2fs" % (mpi_rank, mpi_size, (time.time() - time0)))