-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathcube_split.py
executable file
·247 lines (189 loc) · 7.92 KB
/
cube_split.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
#!/usr/bin/env python
import argparse
import copy
import os
import time
import ase
import numpy as np
ang_2_bohr = 1.0 / 0.52917721067
hart_2_ev = 27.21138602
from mpi4py import MPI
from cp2k_spm_tools import bader_wrapper, cube, cube_utils
comm = MPI.COMM_WORLD
mpi_rank = comm.Get_rank()
mpi_size = comm.Get_size()
parser = argparse.ArgumentParser(description="Splits the cube file into smaller cubes centered around atoms.")
parser.add_argument("cube", metavar="FILENAME", help="Input cube file.")
parser.add_argument(
"--atom_box_size",
type=float,
metavar="L",
required=False,
default=8.0,
help="specify the evaluation box (L^3) size around each atom in [ang].",
)
parser.add_argument("--output_dir", metavar="DIR", default=".", help="directory where to output the cubes.")
### -----------------------------------------------------------
time0 = time.time()
### ------------------------------------------------------
### Parse args for only one rank to suppress duplicate stdio
### ------------------------------------------------------
args = None
args_success = False
try:
if mpi_rank == 0:
args = parser.parse_args()
args_success = True
finally:
args_success = comm.bcast(args_success, root=0)
if not args_success:
print(mpi_rank, "exiting")
exit(0)
args = comm.bcast(args, root=0)
output_dir = args.output_dir if args.output_dir[-1] == "/" else args.output_dir + "/"
### ------------------------------------------------------
### Load the cube meta-data
### ------------------------------------------------------
inp_cube = cube.Cube()
inp_cube.read_cube_file(args.cube, read_data=False)
n_atoms = len(inp_cube.ase_atoms)
dv = np.diag(inp_cube.dv)
### ------------------------------------------------------
### Add periodic images of atoms that are close to the border
### ------------------------------------------------------
border_atom_images = ase.Atoms()
d_cell = np.diag(inp_cube.cell) / ang_2_bohr
inc_box = np.array(
[
inp_cube.origin / ang_2_bohr - args.atom_box_size / 2,
inp_cube.origin / ang_2_bohr + d_cell + args.atom_box_size / 2,
]
)
def point_in_box(p, box):
return box[0, 0] < p[0] < box[1, 0] and box[0, 1] < p[1] < box[1, 1] and box[0, 2] < p[2] < box[1, 2]
for i_x in [-1, 0, 1]:
for i_y in [-1, 0, 1]:
for i_z in [-1, 0, 1]:
if i_x == 0 and i_y == 0 and i_z == 0:
continue
pbc_vec = np.array([i_x, i_y, i_z]) * d_cell
for atom in inp_cube.ase_atoms:
pos = atom.position + pbc_vec
if point_in_box(pos, inc_box):
new_at = copy.deepcopy(atom)
new_at.position = pos
border_atom_images.append(new_at)
### ------------------------------------------------------
### Analyze file memory layout
### ------------------------------------------------------
fhandle = open(args.cube, "r")
n_metadata_lines = 6 + n_atoms
# where does cube data start?
data_start_offset = 0
for i_l in range(n_metadata_lines):
fhandle.readline()
data_start_offset = fhandle.tell()
# how is the cube data organized?
# NB: THe following assumes that the number and width of columns
# remains the same for the whole file
### NOT TRUE FOR CP2K OUTPUTS ###
data_line = fhandle.readline()
n_columns = len(data_line.split())
data_line_offset = fhandle.tell() - data_start_offset
print("----------- data org: ", data_line, n_columns, data_line_offset)
def get_nth_value(n):
row = int(n / n_columns)
col = n % n_columns
fhandle.seek(data_start_offset + row * data_line_offset)
return fhandle.readline().split()[col]
### ------------------------------------------------------
### Divide the atoms between the mpi processes
### ------------------------------------------------------
base_atoms_per_rank = int(np.floor(n_atoms / mpi_size))
extra_atoms = n_atoms - base_atoms_per_rank * mpi_size
if mpi_rank < extra_atoms:
i_atom_start = mpi_rank * (base_atoms_per_rank + 1)
i_atom_end = (mpi_rank + 1) * (base_atoms_per_rank + 1)
else:
i_atom_start = mpi_rank * (base_atoms_per_rank) + extra_atoms
i_atom_end = (mpi_rank + 1) * (base_atoms_per_rank) + extra_atoms
print("R%d/%d, atom indexes %d:%d " % (mpi_rank, mpi_size, i_atom_start, i_atom_end))
### ------------------------------------------------------
### Loop over atoms and extract local cubes
### ------------------------------------------------------
def parse_cube_data(extract_indexes):
"""
TOO SLOW TO BE USEFUL...
Parse the whole cube file value-by-value (slow)
by only taking the assigned memory...
slow but memory usage is okay
Also doesn't assume "fixed" column width in cube file
"""
cube_data = np.zeros(len(extract_indexes))
fhandle.seek(data_start_offset)
cur_index = 0
cube_i = 0
for line in fhandle:
vals = np.array(line.split(), dtype=float)
for i_val, val in enumerate(vals):
if cur_index + i_val in extract_indexes:
cube_data[cube_i] = val
cube_i += 1
cur_index += len(vals)
return cube_data
for i_at in range(i_atom_start, i_atom_end):
at_pos = inp_cube.ase_atoms[i_at].position
cube_pos_1 = at_pos - 0.5 * np.array([1.0, 1.0, 1.0]) * args.atom_box_size
cube_pos_2 = at_pos + 0.5 * np.array([1.0, 1.0, 1.0]) * args.atom_box_size
cube_pos_1_i = np.round((cube_pos_1 - inp_cube.origin / ang_2_bohr) / dv).astype(int)
cube_pos_2_i = np.round((cube_pos_2 - inp_cube.origin / ang_2_bohr) / dv).astype(int)
x_inds = np.arange(cube_pos_1_i[0], cube_pos_2_i[0]) % inp_cube.cell_n[0]
y_inds = np.arange(cube_pos_1_i[1], cube_pos_2_i[1]) % inp_cube.cell_n[1]
z_inds = np.arange(cube_pos_1_i[2], cube_pos_2_i[2]) % inp_cube.cell_n[2]
cube_data = np.zeros(len(x_inds) * len(y_inds) * len(z_inds))
# fastest index is z
cube_i = 0
for ix in x_inds:
for iy in y_inds:
for iz in z_inds:
# extract_indexes.append(iz + iy * inp_cube.cell_n[2] + ix * inp_cube.cell_n[2] * inp_cube.cell_n[1])
ind = iz + iy * inp_cube.cell_n[2] + ix * inp_cube.cell_n[2] * inp_cube.cell_n[1]
cube_data[cube_i] = get_nth_value(ind)
cube_i += 1
# Add only the atoms that fit in the box
atoms_in_box = ase.Atoms()
middle_at_i = 0
for at in inp_cube.ase_atoms + border_atom_images:
if point_in_box(at.position, np.array([cube_pos_1, cube_pos_2])):
if np.allclose(at.position, at_pos):
middle_at_i = len(atoms_in_box)
atoms_in_box.append(copy.deepcopy(at))
# Save the new cube
new_cube = cube.Cube(
title="charge dens",
comment="atom %d" % i_at,
ase_atoms=atoms_in_box,
origin=cube_pos_1_i * dv * ang_2_bohr + inp_cube.origin,
cell=np.diag((cube_pos_2_i - cube_pos_1_i) * dv * ang_2_bohr),
data=cube_data.reshape((len(x_inds), len(y_inds), len(z_inds))),
)
local_dir = output_dir + "atom_%04d/" % i_at
os.makedirs(local_dir, exist_ok=True)
cube_name = "at_%04d.cube" % i_at
new_cube.write_cube_file(local_dir + cube_name)
cube_utils.add_artif_core_charge(new_cube)
ref_cube_name = "at_%04d_artif.cube" % i_at
new_cube.write_cube_file(local_dir + ref_cube_name)
neargrid_dir = local_dir + "neargrid/"
weight_dir = local_dir + "weight/"
os.makedirs(neargrid_dir, exist_ok=True)
os.makedirs(weight_dir, exist_ok=True)
bader_wrapper.call_bader(
neargrid_dir, "../" + cube_name, ref_cube="../" + ref_cube_name, basin_atoms=[middle_at_i], method="neargrid"
)
bader_wrapper.call_bader(
weight_dir, "../" + cube_name, ref_cube="../" + ref_cube_name, basin_atoms=[middle_at_i], method="weight"
)
with open(local_dir + "info.txt", "w") as info_f:
info_f.write("basin_atom_local_index: %d\n" % middle_at_i)
print("R%d/%d finished, total time: %.2fs" % (mpi_rank, mpi_size, (time.time() - time0)))