This repository has been archived by the owner on Oct 5, 2019. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathimage_recog.py
137 lines (115 loc) · 4.91 KB
/
image_recog.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
import os
import sys
import time
import cv2
import numpy as np
import pickle
import tensorflow as tf
from scipy import misc
from packages import facenet, detect_face
def recognizer(images_path,
pretrain_model='./models/20180408-102900',
classifier='./class/classifier.pkl',
npy_dir='./packages',
train_img_dir='./datasets'):
with tf.Graph().as_default():
#gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.6)
gpu_options = tf.GPUOptions(allow_growth=True)
sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options, log_device_placement=False))
with sess.as_default():
pnet, rnet, onet = detect_face.create_mtcnn(sess, npy_dir)
img_options = {'minsize':20,
'threshold':[0.6, 0.7, 0.7],
'factor':0.709,
'margin':44,
'frame_interval':3,
'batch_size':100,
'image_size':182,
'input_image_size':160 }
HumanNames = os.listdir(train_img_dir)
HumanNames.sort()
print('Loading model...')
facenet.load_model(pretrain_model)
images_placeholder = tf.get_default_graph().get_tensor_by_name('input:0')
embeddings = tf.get_default_graph().get_tensor_by_name('embeddings:0')
phase_train_placeholder = tf.get_default_graph().get_tensor_by_name('phase_train:0')
embedding_size = embeddings.get_shape()[1]
classifier_exp = os.path.expanduser(classifier)
with open(classifier_exp, 'rb') as infile:
(model, class_names) = pickle.load(infile)
c = 0
print('Facial Recognition Starting...')
#win = dlib.image_window()
for img in images_path:
frame = cv2.imread(img, 1)
frame = cv2.resize(frame, (0, 0), fx=0.5, fy=0.5)
#frame = dlib.load_rgb_image(img)
#frame = dlib.resize_image(img, 0.5, 0.5)
timeF = img_options['frame_interval']
if (c%timeF == 0):
#find_results = []
if frame.ndim == 2:
frame = facenet.to_rgb(frame)
frame = frame[:, :, 0:3]
bounding_boxes, _ = detect_face.detect_face(frame, img_options['minsize'], pnet, rnet, onet, img_options['threshold'], img_options['factor'])
nrof_faces = bounding_boxes.shape[0]
print('Face Detected: %d' % nrof_faces)
if nrof_faces > 0:
det = bounding_boxes[:, 0:4]
img_options['img_size'] = np.asarray(frame.shape)[0:2]
cropped = []
scaled = []
scaled_reshape = []
bb = np.zeros((nrof_faces, 4), dtype=np.int32)
for i in range(nrof_faces):
emb_array = np.zeros((1, embedding_size))
bb[i][0] = det[i][0]
bb[i][1] = det[i][1]
bb[i][2] = det[i][2]
bb[i][3] = det[i][3]
if bb[i][0] <= 0 or bb[i][1] <= 0 or bb[i][2] >= len(frame[0]) or bb[i][3] >= len(frame):
print('face is too close')
continue
cropped.append(frame[bb[i][1]:bb[i][3], bb[i][0]:bb[i][2], :])
cropped[i] = facenet.flip(cropped[i], False)
scaled.append(misc.imresize(cropped[i], (img_options['image_size'], img_options['image_size']), interp='bilinear'))
scaled[i] = cv2.resize(scaled[i], (img_options['input_image_size'], img_options['input_image_size']), interpolation=cv2.INTER_CUBIC)
scaled[i] = facenet.prewhiten(scaled[i])
scaled_reshape.append(scaled[i].reshape(-1, img_options['input_image_size'], img_options['input_image_size'], 3))
feed_dict = {images_placeholder: scaled_reshape[i], phase_train_placeholder: False}
emb_array[0, :] = sess.run(embeddings, feed_dict=feed_dict)
predictions = model.predict_proba(emb_array)
print(predictions)
best_class_indices = np.argmax(predictions, axis=1)
best_class_probabilities = predictions[np.arange(len(best_class_indices)), best_class_indices]
print('Accuracy: ', best_class_probabilities)
cv2.rectangle(frame, (bb[i][0], bb[i][1]), (bb[i][2], bb[i][3]), (0, 255, 255), 1)
if best_class_probabilities > 0.15:
text_x = bb[i][0]
text_y = bb[i][1] - 10
print('Result Indices: ', best_class_indices[0])
for H_i in HumanNames:
if HumanNames[best_class_indices[0]] == H_i:
predict_names = HumanNames[best_class_indices[0]]
cv2.putText(frame, predict_names, (text_x, text_y), cv2.FONT_HERSHEY_COMPLEX_SMALL, 1, (0, 0, 255), thickness=1, lineType=2)
else:
text_x = bb[i][0]
text_y = bb[i][1] - 10
print('Result Indices: ', best_class_indices[0])
cv2.putText(frame, 'Unknown', (text_x, text_y), cv2.FONT_HERSHEY_COMPLEX_SMALL, 1, (0, 0, 255), thickness=1, lineType=2)
else:
print('Unable to find face')
cv2.imshow('Face(s) detected', frame)
if cv2.waitKey(0) & 0xFF == ord('\r'):
print('Processing next image...')
elif cv2.waitKey(0) & 0xFF == ord('q'):
print('Ending...')
break
#sys.exit('Ending...')
cv2.destroyAllWindows()
if __name__ == '__main__':
test_img_path='./test'
images = [os.path.join(test_img_path, img) for img in os.listdir(test_img_path)]
#images = ['noey.jpg']
print(images)
recognizer(images)