-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathEDA_and_Preprocessing.py
579 lines (392 loc) · 17.3 KB
/
EDA_and_Preprocessing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
#!/usr/bin/env python
# coding: utf-8
# In[ ]:
from google.colab import drive
drive.mount('/content/drive')
# In[ ]:
get_ipython().system('ln -s /content/drive/MyDrive /mygdrive')
# In[ ]:
get_ipython().system('ls /mygdrive')
# In[1]:
import math
import numpy as np
import pandas as pd
get_ipython().run_line_magic('matplotlib', 'inline')
from matplotlib import pyplot as plt
import seaborn as sns
import os
import cv2
from tqdm import tqdm
import sys
import PIL
from PIL import Image
import shapely
from shapely.geometry import Polygon
import shutil
import random
from collections import Counter
import sys
from shapely import speedups
speedups.disable()
IN_COLAB = "google.colab" in sys.modules
if IN_COLAB:
from google.colab.patches import cv2_imshow
# In[ ]:
shapely.__version__, PIL.__version__, cv2.__version__
# In[ ]:
len(os.listdir("./Vehicules1024")), len(os.listdir("./Annotations1024"))
# # Below images are corrupted
# In[ ]:
os.remove("./Vehicules1024/00000935_co.png")
os.remove("./Vehicules1024/00001233_co.png")
os.remove("./Vehicules1024/00000305_co.png")
os.remove("./Vehicules1024/00000615_co.png")
os.remove("./Vehicules1024/00001271_ir.png")
# In[ ]:
for image in os.listdir("./Vehicules1024/"):
if image.endswith("_ir.png"):
os.remove("./Vehicules1024/" + image)
# In[ ]:
def plot_distribution(classes, name):
counter = Counter(classes)
print(name, counter)
print(sorted(counter.keys()), len(counter.keys()))
plt.figure()
plt.bar(counter.keys(), counter.values())
plt.xlabel("Class")
plt.ylabel("Objects points per class")
plt.title("Distribution of classes in " + str(name))
# In[ ]:
def know_data_(path, annot_path):
percentage_area = []
classes = []
for image in os.listdir(path):
if image.endswith("_co.png"):
im = cv2.imread(path + image)
h, w, _ = im.shape
annot_name = image.replace("_co.png", ".txt")
if not os.path.exists(annot_path + annot_name):
continue
annotations = pd.read_csv(annot_path + annot_name, sep = " ", names = ["xc", "yc", "angle", "class", "isEntire", "occluded", "x1", "x2", "x3", "x4", "y1", "y2", "y3", "y4"])
annotations["w"] = annotations[["x1", "x2", "x3", "x4"]].max(axis = 1) - annotations[["x1", "x2", "x3", "x4"]].min(axis = 1)
annotations["h"] = annotations[["y1", "y2", "y3", "y4"]].max(axis = 1) - annotations[["y1", "y2", "y3", "y4"]].min(axis = 1)
annotations["percentage"] = 100 * ( annotations["w"] * annotations["h"] ) / ( w * h )
percentage_area.extend(annotations["percentage"].tolist())
classes.extend(annotations["class"].tolist())
return percentage_area, classes
# In[ ]:
area, classes = know_data_("./Vehicules1024/", "./Annotations1024/")
# In[ ]:
sns.displot(x = area)
plt.xlabel("Percentage area of occupied by objects in an image")
plt.title("Distribution plot of percentage area of objects in an image")
plt.grid()
plt.show()
# In[ ]:
np.percentile(np.array(area), 1)
# In[ ]:
s = pd.Series(area)
s.quantile([.1, .2, .3, .4, .5, .6, .7, .8, .9, .99])
# * From above, we can see that 99.9% of the objects occupy area less than 1% in the entire image. 90% of the objects occupy area less than or equal to 0.25% in the entire image.
# In[ ]:
plot_distribution(classes, "dataset")
# In[ ]:
def print_files(path, annot_path, classes):
for image in os.listdir(path):
if image.endswith("_co.png"):
im = cv2.imread(path + image)
h, w, _ = im.shape
annot_name = image.replace("_co.png", ".txt")
if not os.path.exists(annot_path + annot_name):
continue
annotations = pd.read_csv(annot_path + annot_name, sep = " ", names = ["xc", "yc", "angle", "class", "isEntire", "occluded", "x1", "x2", "x3", "x4", "y1", "y2", "y3", "y4"])
for index, row in annotations.iterrows():
for c in classes:
if int(row["class"]) == c:
print(c, annot_name)
# In[ ]:
print_files("./Vehicules1024/", "./Annotations1024/", [7, 8])
# In[ ]:
def make_datasets(src1, src2, dstn, sample = None):
'''
This function makes datasets.
If sample is None, then all the files from src1 and src2 are moved to dstn
else a sample of them is moved from src1, src2 to dstn
'''
files = os.listdir(src1)
if sample is None:
for file in files:
f2 = file.replace("_co.png", ".txt")
if os.path.exists(src2 + f2):
shutil.move(src1 + file, dstn + f2.replace(".txt", ".png"))
shutil.move(src2 + f2, dstn + f2)
else:
for n in sample:
f2 = files[n].replace("_co.png", ".txt")
if os.path.exists(src2 + f2):
shutil.move(src1 + files[n], dstn + f2.replace(".txt", ".png"))
shutil.move(src2 + f2, dstn + f2)
# # train test cv split of data
# In[ ]:
get_ipython().system('mkdir "test"')
get_ipython().system('mkdir "cv"')
get_ipython().system('mkdir "train"')
# In[ ]:
np.random.seed(10)
# test
test_sample = random.sample(range(len(os.listdir("./Vehicules1024/"))), int(0.2 * len(os.listdir("./Vehicules1024/"))))
make_datasets("./Vehicules1024/", "./Annotations1024/", "./test/", test_sample)
# cv
cv_sample = random.sample(range(len(os.listdir("./Vehicules1024/"))), int(0.25 * len(os.listdir("./Vehicules1024/"))))
make_datasets("./Vehicules1024/", "./Annotations1024/", "./cv/", cv_sample)
# train
make_datasets("./Vehicules1024/", ".Annotations1024/", "./train/")
len(os.listdir("./train")), len(os.listdir("./cv")), len(os.listdir("./test"))
# In[ ]:
name = "00000004"
img_path = "./train/" + name + ".png"
annot_path = "./train/" + name + ".txt"
img = cv2.imread(img_path)
df = pd.read_csv(annot_path, sep = " ", names = ["xc", "yc", "angle", "class", "isEntire", "occluded", "x1", "x2", "x3", "x4", "y1", "y2", "y3", "y4"])
for index, row in df.iterrows():
x1 = int(row["x1"])
x2 = int(row["x2"])
x3 = int(row["x3"])
x4 = int(row["x4"])
y1 = int(row["y1"])
y2 = int(row["y2"])
y3 = int(row["y3"])
y4 = int(row["y4"])
cv2.rectangle(img, (min(x1, x2, x3, x4), min(y1, y2, y3, y4)), (max(x1, x2, x3, x4), max(y1, y2, y3, y4)), (0,0,255), 2)
cv2.imshow(img)
cv2.waitKey(0)
cv2.destroyAllWindows()
# # distribution of classes
# In[ ]:
'''
original class: 7 - motorcycle and 8 -bus has 3 and 4 objects respectively in total. So, removing them
'''
'''
car-1
truck-2
plane-3
tractor-4
camping_car-5
boat-6
pickup-7
other-8
van-9
'''
def know_data(path):
classes = []
for image in os.listdir(path):
if image.endswith(".png"):
im = cv2.imread(path + image)
h, w, _ = im.shape
annot_name = image.replace(image.split(".")[-1], "txt")
annotations = pd.read_csv(path + annot_name, sep = " ", names = ["xc", "yc", "angle", "class", "isEntire", "occluded", "x1", "x2", "x3", "x4", "y1", "y2", "y3", "y4"])
annotations = annotations[annotations["class"].isin([1,2,4,5,9,10,11,23,31])]
annotations["class"].replace(31, 3, inplace = True)
annotations["class"].replace(23, 6, inplace = True)
annotations["class"].replace(11, 7, inplace = True)
annotations["class"].replace(10, 8, inplace = True)
annotations["w"] = annotations[["x1", "x2", "x3", "x4"]].max(axis = 1) - annotations[["x1", "x2", "x3", "x4"]].min(axis = 1)
annotations["h"] = annotations[["y1", "y2", "y3", "y4"]].max(axis = 1) - annotations[["y1", "y2", "y3", "y4"]].min(axis = 1)
classes.extend(annotations["class"].tolist())
return classes
# In[ ]:
train_classes = know_data("./train/")
cv_classes = know_data("./cv/")
test_classes = know_data("./test/")
# In[ ]:
plot_distribution(train_classes, "train set")
plot_distribution(cv_classes, "cv set")
plot_distribution(test_classes, "test set")
# # Pascal VOC to yolo format conversion
# In[ ]:
def to_yolo(path):
'''
This function converts
annotatiions to YOLO format
'''
for image in os.listdir(path):
if image.endswith(".png"):
im = cv2.imread(path + image)
h, w, _ = im.shape
annot_name = image.replace(image.split(".")[-1], "txt")
if os.path.exists(path + annot_name):
annotations = pd.read_csv(path + annot_name, sep = " ", names = ["xc", "yc", "angle", "class", "isEntire", "occluded", "x1", "x2", "x3", "x4", "y1", "y2", "y3", "y4"])
annotations.drop(columns = ["xc", "yc", "angle", "isEntire", "occluded"], inplace = True)
annotations["class"].replace(31, 3, inplace = True)
annotations["class"].replace(23, 6, inplace = True)
annotations["class"].replace(11, 7, inplace = True)
annotations["class"].replace(10, 8, inplace = True)
annotations["class"] = annotations["class"] - 1
annotations["xmin"] = annotations[["x1", "x2", "x3", "x4"]].min(axis = 1)
annotations["xmax"] = annotations[["x1", "x2", "x3", "x4"]].max(axis = 1)
annotations["ymin"] = annotations[["y1", "y2", "y3", "y4"]].min(axis = 1)
annotations["ymax"] = annotations[["y1", "y2", "y3", "y4"]].max(axis = 1)
annotations.drop(columns = ["x1", "x2", "x3", "x4", "y1", "y2", "y3", "y4"], inplace = True)
annotations["xc"] = (annotations["xmin"] + annotations["xmax"])/2/w
annotations["yc"] = (annotations["ymin"] + annotations["ymax"])/2/h
annotations["w"] = (annotations["xmax"] - annotations["xmin"])/w
annotations["h"] = (annotations["ymax"] - annotations["ymin"])/h
annotations.drop(columns = ["xmin", "xmax", "ymin", "ymax"], inplace = True)
annotations.to_csv(path + annot_name, sep = " ", index = False, header = False, float_format = "%.6f")
else:
print("annotations not available for", annot_path + annot_name )
# In[ ]:
to_yolo("./train/")
to_yolo("./cv/")
to_yolo("./test/")
# # sanity check of conversion
# In[ ]:
def display_images_and_labels(img_path):
annot_path = img_path.replace(".png", ".txt")
number_of_classes = 9
colors = [
(190, 200, 68),
(125, 102, 60),
(54, 186, 32),
(246, 119, 66),
(61, 196, 32),
(139, 126, 1),
(14, 40, 254),
(55, 113, 168),
(144, 45, 240),
(127, 32, 61)
]
obj_names = [
"car",
"truck",
"plane",
"tractor",
"camping_car",
"boat",
"pickup",
"other",
"van"
]
df = pd.read_csv(annot_path, sep = " ", names = ["class", "xc", "yc", "w", "h"])
im = cv2.imread(img_path)
h, w, _ = im.shape
df["w"] = np.round_(df["w"]*w)
df["h"] = np.round_(df["h"]*h)
df["x"] = np.round_(df["xc"]*w - df["w"]/2)
df["y"] = np.round_(df["yc"]*h - df["h"]/2)
for index, row in df.iterrows():
c = colors[int(row["class"])]
cv2.rectangle(im, (int(row["x"]), int(row["y"])), (int(row["x"]) + int(row["w"]), int(row["y"]) + int(row["h"])), (int(c[0]), int(c[1]), int(c[2])), 2)
cv2.putText(im, obj_names[int(row["class"])], (int(row["x"])-4, int(row["y"])-4), cv2.FONT_HERSHEY_SIMPLEX, 1, colors[int(row["class"])], 1, cv2.LINE_AA)
if not IN_COLAB:
cv2.imshow('image', im)
cv2.waitKey(0)
cv2.destroyAllWindows()
else:
from google.colab.patches import cv2_imshow
cv2_imshow(im)
# In[ ]:
display_images_and_labels("./train/00000073.png")
# # tile images
# In[9]:
# Reference: https://github.com/slanj/yolo-tiling/blob/main/tile_yolo.py
# Code taken from above reference and modified to this problem
def tiler(imnames, newpath, falsepath, slice_size, ext):
'''
This function converts images into
blocks of slice_size x slice_size
'''
for imname in imnames:
print(imname)
im = cv2.imread(imname)
height, width, _ = im.shape
h_new = math.ceil(height/slice_size) * slice_size
w_new = math.ceil(width/slice_size) * slice_size
im = cv2.resize(im, (w_new, h_new), cv2.INTER_LINEAR)
labname = imname.replace(ext, '.txt')
labels = pd.read_csv(labname, sep=' ', names=['class', 'x1', 'y1', 'w', 'h'])
# we need to rescale coordinates from 0-1 to real image height and width
labels[['x1', 'w']] = labels[['x1', 'w']] * w_new
labels[['y1', 'h']] = labels[['y1', 'h']] * h_new
boxes = []
# convert bounding boxes to shapely polygons. We need to invert Y and find polygon vertices from center points
for row in labels.iterrows():
x1 = row[1]['x1'] - row[1]['w']/2
y1 = (h_new - row[1]['y1']) - row[1]['h']/2
x2 = row[1]['x1'] + row[1]['w']/2
y2 = (h_new - row[1]['y1']) + row[1]['h']/2
boxes.append((int(row[1]['class']), Polygon([(x1, y1), (x2, y1), (x2, y2), (x1, y2)])))
#print('Image:', imname)
# create tiles and find intersection with bounding boxes for each tile
for i in range((h_new // slice_size)):
for j in range((w_new // slice_size)):
x1 = j*slice_size
y1 = h_new - (i*slice_size)
x2 = ((j+1)*slice_size) - 1
y2 = (h_new - (i+1)*slice_size) + 1
pol = Polygon([(x1, y1), (x2, y1), (x2, y2), (x1, y2)])
imsaved = False
slice_labels = []
for box in boxes:
if pol.intersects(box[1]):
inter = pol.intersection(box[1])
if not imsaved:
sliced_im = im[i*slice_size:(i+1)*slice_size, j*slice_size:(j+1)*slice_size, :]
filename = imname.split('/')[-1]
slice_path = newpath + "/" + filename.replace(ext, f'_{i}_{j}{ext}')
slice_labels_path = newpath + "/" + filename.replace(ext, f'_{i}_{j}.txt')
#print(slice_path)
cv2.imwrite(slice_path, sliced_im)
#sliced_im.save(slice_path)
imsaved = True
# get smallest rectangular polygon (with sides parallel to the coordinate axes) that contains the intersection
new_box = inter.envelope
# get central point for the new bounding box
centre = new_box.centroid
# get coordinates of polygon vertices
x, y = new_box.exterior.coords.xy
# get bounding box width and height normalized to slice size
new_width = (max(x) - min(x)) / slice_size
new_height = (max(y) - min(y)) / slice_size
# we have to normalize central x and invert y for yolo format
new_x = (centre.coords.xy[0][0] - x1) / slice_size
new_y = (y1 - centre.coords.xy[1][0]) / slice_size
slice_labels.append([box[0], new_x, new_y, new_width, new_height])
if len(slice_labels) > 0:
slice_df = pd.DataFrame(slice_labels, columns=['class', 'x1', 'y1', 'w', 'h'])
#print(slice_df)
slice_df.to_csv(slice_labels_path, sep=' ', index=False, header=False, float_format='%.6f')
if not imsaved and falsepath:
sliced_im = im[i*slice_size:(i+1)*slice_size, j*slice_size:(j+1)*slice_size]
filename = imname.split('/')[-1]
slice_path = falsepath + "/" + filename.replace(ext, f'_{i}_{j}{ext}')
sliced_im.save(slice_path)
#print('Slice without boxes saved')
imsaved = True
print("tiling successfully completed")
# In[15]:
ext = ".png"
size = 416
train_src = "./train/"
cv_src = "./cv/"
test_src = "./test/"
train_imnames = [train_src + name for name in os.listdir(train_src) if name.endswith(ext)]
cv_imnames = [cv_src + name for name in os.listdir(cv_src) if name.endswith(ext)]
test_imnames = [test_src + name for name in os.listdir(test_src) if name.endswith(ext)]
tiler(train_imnames, "./train_tiled/", None, size, ".png")
tiler(cv_imnames, "./cv_tiled/", None, size, ".png")
tiler(test_imnames, "./test_tiled/", None, size, ".png")
# In[ ]:
# Reference: https://github.com/theAIGuysCode/YOLOv4-Cloud-Tutorial/blob/master/yolov4/generate_test.py
def generate_text_files(images_path, name):
images = []
for image in tqdm(os.listdir(images_path)):
if image.endswith(".png"):
images.append("data/" + name + "/" + image)
df = pd.DataFrame(images)
df.to_csv("./data/vedai/data/" + name + ".txt", index = False, header = False)
# In[ ]:
generate_text_files("./data/vedai/data/train_tiled/", "train_tiled")
generate_text_files("./data/vedai/data/cv_tiled/", "cv_tiled")
generate_text_files("./data/vedai/data/test_tiled/", "test_tiled")
# In[ ]: